
The Case for Cloud-Enabled Mobile Sensing Services ∗

Sougata Sen, Archan Misra,
Rajesh Balan

School of Information Systems,
Singapore Management University

{sougata.sen.2012,archanm,rajesh}@smu.edu.sg

Lipyeow Lim
Information and Computer Science Department,

University of Hawaii at Manoa
lipyeow@hawaii.edu

ABSTRACT
We make the case for cloud-enabled mobile sensing services that
support an emerging application class, one which infers near-real
time collective context using sensor data obtained continuously from
a large set of consumer mobile devices. We present the high-level
architecture and functional requirements for such a mobile sens-
ing service, and argue that such a service can significantly improve
the scalability and energy-efficiency of large-scale mobile sens-
ing by coordinating the sensing & processing tasks across multi-
ple devices. We then focus specifically on the problem of energy-
efficiency and provide early exemplars of how optimizing query
execution jointly over multiple phones can lead to substantial en-
ergy savings.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Cloud Computing; C.3 [Special-Purpose and Application-
Based Systems]: [Real-time and embedded systems]

Keywords
Mobile Phone Sensing, Power Management, Query Optimization

1. INTRODUCTION
The popularity of modern well-provisioned smartphones has made

the use of cloud resources for computational augmentation (e.g.,
for real-time speech translation) less compelling. Instead, there has
been an emphasis on building cloud services to collect and process
sensor and context data produced by these smartphones, to enhance
interesting applications such as maps, real time advertisements, etc.
However, these services are presently tailored for individualized

∗This work is supported in part by the Singapore Ministry of Ed-
ucation Academic Research Fund Tier 2 under the research grant
MOE2011-T2-1-001. Any opinions, findings, conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the granting agency or
Singapore Management University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MCC’12, August 17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1519-7/12/08 ...$15.00.

interactions; i.e., they treat each mobile device as an independent
entity.

This paper posits that mobile devices are not just infotainment
platforms, but are also powerful distributed sensing devices. In
particular, continuous sensing and processing of a variety of device-
embedded sensor streams (such as accelerometers, gyros & micro-
phones) represents a distinct application class, that provides invalu-
able real-time context for a variety of consumer and enterprise ap-
plications. These applications typically require not just individual
context, but collective context obtained by correlating and filtering
the sensor streams from a group of devices.

We hypothesize that the ability of a cloud-based service to intel-
ligently coordinate the sensing and context extraction tasks across
multiple mobile devices will be crucial to such applications, and
can result in significant energy and/or bandwidth savings. In the
rest of this paper we explore the following specific questions:
• What are some of the compelling applications that require

cloud-based mobile sensing services? We answer this in Sec-
tion 2.

• What are the key building blocks of a cloud-based mobile
sensing service, and the associated performance, scalability,
privacy, and programming API requirements? We describe
these in Section 3.

• For a particular application that requires sensor data, how can
acquiring the data from multiple phones help to save energy?
How does the tradeoff between sensing and communication
energy overheads determine the likely benefits of distribut-
ing the sensing and context computation tasks across multi-
ple devices, and how does this benefit vary between different
commonly-used sensors? We address these questions in Sec-
tion 4.3.

• What benefits does using a cloud-based service (where there
can be a central “coordinator”) have over more autonomous
query optimization solutions? We explore this issue in Sec-
tions 4.4 & 4.5.

2. MOTIVATING APPLICATIONS
Before delving into the proposed architecture, we describe 3 mo-

tivating applications (each of these is a real world problem that
would benefit from our proposed cloud-based architecture) to il-
lustrate the use of group context to achieve a useful end result. Ta-
ble 1 summarizes the applications and lists the sensors needed for
each application, as well as a few additional attributes that will be
explained shortly.

Airport Flight Boarding: A common problem for airlines is
identifying how long it will take all passengers to board a partic-
ular flight. If the airline underestimates the time, the flight might

53

Application Sensors Membership Shareable
Needed Set Sensors?

Airport Flight Wi-Fi, Accel, Explicit No
Boarding Compass, Microphone
Dynamic GPS, Wi-Fi, Explicit & Yes
Calendar Accel, Gyro, Microphone Implicit

Meeting Status Wi-Fi, Microphone, Explicit Yes
Indicator Accel, Light

Table 1: Characterizing Different Applications

leave late, incurring both passenger wrath and possible additional
gate charges. If the time is overestimated, the gate might be blocked
longer than needed, leading to unnecessarily low utilization. Ob-
taining an accurate boarding time, however, is quite hard as it re-
quires knowing where all the passengers of the particular flight are
currently located and their ETA to the boarding gate.

If our proposed cloud-based sensing service was available, we
could imagine building an airport boarding application that pro-
vides situational awareness of each passenger that needs to board
a particular flight. The application is provided with the estimated
departure time of the flight, the departure gate, and the list of pas-
sengers that need to board. It then continually tracks each passen-
ger and determines a gate ETA for each passenger. However, to do
this accurately and efficiently, we need to use sensor data from both
the passengers themselves and other people in the vicinity of such
passengers.

For example, using the Wi-Fi sensor in the phone of the passen-
gers if it is found that the passenger is near the security gate, then
the cloud service can use the Wi-Fi, accelerometer, and compass
data of nearby phones to determine the security queue length and
rate of progress. It can then determine how long it would take the
passenger to reach the required gate (from their current location).
The application can also use sensor data from multiple phones to
estimate how many passengers are sitting or standing (using Wi-
Fi and accelerometer data) at the departure gate, and how noisy
or chaotic (using microphone data) the gate area is. Using such
real-time tracking, the application can, for example, send boarding
alerts to passengers who are far from the gate or even dynamically
update the plane’s “gate pushback” time.

Dynamic Calendar: A common requirement for university stu-
dents is the need to schedule many impromptu group meetings to
discuss class project requirements. However, the dynamic sched-
ule of their group members, coupled with the transient availabil-
ity of meeting places (study rooms, couches, etc. are rarely empty
near major semester deadlines), makes scheduling these impromptu
meetings a chore. Hence, students could really benefit from a dy-
namic calendar application that continuously monitors the move-
ment of people and the availability of meeting locations to dynam-
ically recommend a time and place for project meetings.

More specifically, the application, using our cloud services, can
monitor the movement pattern & location of meeting participants
(using GPS, Wi-Fi, accelerometer, and gyro data) to dynamically
update the “expected meeting start time” (when > x% of the partic-
ipants might be physically present). It can also monitor the location
of other peers (using GPS and Wi-Fi data) coupled with acoustic
levels of potential meeting spaces (using microphone data) to also
suggest “quiet & available” meeting spaces to the participants.

Meeting Status Indicator: In enterprise environments, an exec-
utive assistant may benefit from a proactive “Meeting Status” ap-
plication to get real-time updates of an executive’s schedule. Us-
ing our cloud service, we could build an application that monitors
the location and current physical activity (sitting, standing) (using

Wi-Fi and accelerometer data) of the participants of a particular
meeting.

It can then combine this participant data with the ambient light
and sound levels of the meeting room (using microphone and light
sensor data) to detect when a meeting has truly ended (vs. when a
single participant steps out briefly to take a phone call).

The examples are, by no means, exhaustive. They, however, help
illustrate a few important points:
• Query Logic: The application logic can be viewed as a com-

plex query (consisting of a mix of conjunctive (AND), dis-
junctive (OR) & negation (NOT) predicates or conditions),
defined over multiple sensor streams, associated with multi-
ple devices. For example, the “Meeting Status” application
would use a query along the lines of “If (Person_A = ‘stand-
ing’ AND Person_B = ‘standing’ AND light_level=‘high’
AND ambient_sound = ‘conversation’)→meeting=‘ended”’.

• Membership Set: In some cases, the set of users (or devices)
that needs to be sensed is explicitly defined–e.g., only the
checked-in passengers for a specific flight. In some other
cases, the set of users may be implicit and non-enumerable.
For example, to check whether a specific space is occupied, it
may be sufficient to obtain the location of only a small subset
of students.

• Sensor Sharing: In many cases, the query predicates will re-
quire a sensor stream from a specific mobile device. For ex-
ample, to know whether a meeting participant is sitting, we
need to sample the participant’s accelerometer sensor. When
query semantics refer to ambient context, the sensor streams
may, however, be fungible. For example, to obtain the am-
bient light/sound levels in a meeting room, the application
does not require the microphone and light sensor readings
from all participants – it can load-balance this task among
the participating devices. (Another example is the problem
of estimating the progress rate of the security queue, in our
airport flight boarding application.)

Figure 1: High-Level Architectural Components

3. PROPOSED CLOUD ARCHITECTURE
The motivating applications illustrate our proposition: there are

a variety of consumer and enterprise applications (whether running
on a backend server or on a consumer mobile device) that can lever-
age upon mobile sensing, especially when conducted over a group
of mobile devices, to infer collective or group context. One naive
approach is to have each application directly communicate with all

54

available mobile phones, retrieve all the relevant sensor streams
from each of these phones, and then perform the query process-
ing locally. This approach is impractical for two reasons: First, it
requires transmission of the same phone sensor data to multiple ap-
plication end-points, increasing the phone’s communication over-
head. Second, it fails to harness the significant energy efficiencies
that may be achieved (shown in Sections 4.4 & 4.5) by optimizing
queries over multiple phones jointly.

Our proposal, as illustrated in Figure 1, is a cloud-based Coor-
dination Service for large-scale, continuous mobile sensing. Dif-
ferent applications connect to this service and describe their infor-
mation requirements as a tuple 〈M,Q〉, where M denotes the set
(explicit or implicit) of mobile devices/sensors that are needed to
satisfy the query and Q specifies the query processing logic. This
coordination service then takes this entire collection of informa-
tion requests (i.e., the set of 〈M,Q〉 tuples) and then continuously
optimizes, on a global basis (across all queries), the tasking of in-
dividual sensors on individual phones.

The four key requirements of our architecture are:
1. Significantly Reduce Energy & Bandwidth Costs: The key

insight underpinning this approach is that the conventional push-
approach, where each mobile phone/sensor simply pushes its sensed
value (or derived context) to the Coordination Service, is unneces-
sarily wasteful. Instead, as we show in Section 4, substantial sav-
ings may be achieved, with no impact on query accuracy, by hav-
ing the Coordination Service adopt a more proactive pull-based ap-
proach, where it actively and continually adjusts the sensing tasks
of different smartphones and the retrieval of sensed data.

2. Scaling Both Sensors and Applications: The architecture
needs to scale to thousands of mobile devices providing large amounts
of continuous sensor data to thousands of applications. We plan to
address this problem by a) carefully partitioning the phones into
activity groups (based on locality, temporality, or other attributes)
to maximize the data reuse within groups, and b) using the coordi-
nation service to reduce the sensor acquisition load on individual
mobile devices by combining the requirements of multiple applica-
tions.

3. Avoiding Privacy Leaks: Our service short circuits query
processing to achieve energy and bandwidth savings across devices.
For example, a query of gps_a = indoors AND gps_b = outdoors
would be stopped if a’s GPS sensor is queried and the result is
found to be not indoors. An adversary who has access to device
b (but not access to the application making the query or the cloud
service itself) could potentially infer the GPS state of a by moni-
toring when the service queries b for a reading (implying that a is
indoors). We shall explore various policy-based mechanisms (e.g.,
the ACF framework [5]) to support scalable protection against such
implicit context leakage.

4. Providing an Easy To Use Programming API: A com-
mon problem with distributed sensing environments is the com-
plexity required to program applications to use those environments.
However, recent work shows promise in developing programmer
friendly environments even for complicated sensing tasks. For ex-
ample, Balan et. al [2] demonstrated a syntax language that allowed
even novice programmers to quickly and effectively partition large
unfamiliar monolithic applications for use in a distributed dynamic
partitioning environment. We plan to explore similar programming
abstractions for our cloud service.

4. GLOBAL COORDINATION FOR ENERGY-
EFFICIENT MOBILE SENSING

For the rest of this paper, we focus on our first requirement: re-

ducing energy costs for mobile sensing. We first introduce a previ-
ously suggested model of continuous query optimization that helps
to save energy by avoiding the unnecessary overheads of transfer-
ring data wirelessly from a sensor source to a querying destinatin
node. We then explore the various types of enhancements that
would be needed, within this framework, to address some of the
unique challenges/opportunities for large-scale multi-phone sens-
ing.

4.1 Continuous Query Optimization
Our basic query optimization framework is inspired by ACQUA [7],

which optimizes the sequence in which different predicates of a
complex continuous query are evaluated, taking into account both
selectivity statistics and the cost of data sensing/acquisition. We
shall show that the basic procedure defined in [7] (which considered
the case of multiple sensors wirelessly connected to a single mobile
device) requires significant enhancements to address our problem
of large-scale mobile sensing, where multiple queries are being ex-
ecuted simultaneously over multiple mobile devices.

As a brief overview, ACQUA focuses on a complex stream query
Q consisting of a set of conjunctive or disjunctive predicates P ,
where predicate Pi at the leaf of the ‘query graph’ refers to a par-
ticular sensor Si. For example, consider a query “State〈Accel〉=
‘walking’ and Location〈Wi-Fi〉=‘classroom’, where the activity state
is deduced from an underlying accelerometer activity stream and
location is deduced by using fingerprinting-based techniques ap-
plied to Wi-Fi scans. ACQUA’s query semantics are defined by
two parameters: the Evaluation Period ω specifies the periodicity
of evaluation, while the ‘tumbling window’ size of each predicate
determines the interval of sensor data that it requires. In the sim-
plest case, each tumbling window is the same size as ω (see Fig-
ure 2 for an illustration of such a query).

The ACQUA algorithm tries to balance the communication cost
(denoted by Ci) of retrieving the data from sensor Si for evaluating
the predicate Pi, with the current selectivity characteristic (Si) of the
predicate; as a high-level overview, it uses a Normalized Acquisi-
tion Cost (NAC) metric defined by NAC = Ci

Pi
and then evaluates

the predicates in ascending order of NAC values (in effect, prefer-
ring to evaluate cheaper and more selective predicates first, so as to
abort the query processing early).

The basic logic in [7] assumes that the sensor streams are ac-
quired and predicates are evaluated every ω secs. However, if the
query can tolerate the resulting evaluation latency, better energy ef-
ficiency is achieved if the sensor data is batched and transmitted
once every Batch Threshold (denoted by ∆) secs–i.e., if the eval-
uation for ∆

ω
evaluation periods is performed simultaneously (see

Figure 2). In Section 4.3), we shall see ∆ leads to interesting, non-
obvious trade-offs that have not been previously considered and
that require us to enhance the query optimization logic.

4.2 Micro-Experiments
In the rest of this section, we shall use simple micro-experiments

(on one/two mobile phones) to quantify and illustrate some of the
ways in which the mobile context sensing process (consisting of
sensor sampling, stream processing and result transmission) can be
optimized. The use of a cloud-based coordinator gives rise to two
interesting possibilities:
• The sensing and processing steps may occur at different loca-

tions –e.g., the sensing may take place on the mobile device,
while the actual processing occurs on the cloud-based coor-
dinator.

• In scenarios where collaborative sensing is possible, the sens-
ing task itself may take place on a surrogate mobile device.

55

Sample ’conjunctive’ query over (Accel, Wi-Fi) sensors. The
figure shows how a result is generated every ω secs, and how
multiple answers are batched & transferred to the cloud every
∆ seconds.

Figure 2: Continuous Query Processing

The specific choices made in query processing can be represented
as a tuple (loc1, loc2), where loc1, loc2 indicate, respectively, the
location where sensing and processing occurs and can assume the
value ‘L’ (local) or ‘S’ (server/ surrogate). Thus, (L,S), for exam-
ple, denotes an approach where the sensor stream is generated on
the mobile device, but the processing occurs on a cloud server.

To perform our scaled-down conceptual studies, we set up a
micro-test environment similar to Figure 1. We used two Google
Nexus One phones for our studies and the PowerTutor software [1]
for our power measurements.

We used 3 representative sensors: (1) accelerometer (sampled
at 30 Hz), with processing to detect {walking, sitting} events over
a ‘frame’ of 5 secs; (2) GPS (sampled at 2 Hz), with processing
once every 5 secs to detect ‘location change of 5 meters’; (3) Wi-Fi
(scanning performed once every 5 secs (0.2 Hz)), with the scanned
AP RSSI readings used to compute indoor location based on prior
RF fingerprints.

4.3 Characterizing the Computation vs. Com-
munication Tradeoff

We first focus on the single case of a single query, running on a
single smartphone and investigate the questions:

a) What energy benefits might there be, for different sensors,
of offloading the sensing or computation tasks to an alternate
device?

b) How are the costs affected by the query evaluation period ω

and the batch duration ∆?

In this case, all the energy/power costs were measured on the pri-
mary phone, while the peer (surrogate) phone provided sensing
data (for the (S,L) and (S,S) cases). All communication was or-
chestrated through our Coordinating Server; the Wi-Fi radio on the
phone was used for communicating with the server (besides being
used as a location sensor).

We first study, in Table 2, the energy consumption for the 3
different sensors (Accel, GPS, Wi-Fi) for the 4 different location
choices (of sensing & computation locations), for a chosen value
of ω = ∆ = 5 (with the Wi-Fi interface being ‘always on’). We
can observe that the benefit of offloading either the sensing (to
a cooperating peer) or the computation (to a cloud node) clearly
depends on the energy overheads of the sensor. For GPS (whose
power consumption is known to be the highest among sensors &
around 250mW), transferring the sensing to a cooperating peer can

Sensor Avg. Power (mW)
(L,L) (L,S) (S,L) (S,S)

Accel. 41.4 40.1 36.6 36.5
GPS. 308.2 305.7 37.5 36.7
Wi-Fi 50.1 73.8 39.3 37 .1

Table 2: Sensor Energy Characteristics

achieve 87% lower energy overhead, while the benefit of offload-
ing the processing is marginal. Conversely, for the accelerometer,
performing both the sensing & computation locally on the mobile
node is potentially fine, as any energy savings achieved in offload-
ing computation are negated by the power consumed in transferring
the larger volume of data via Wi-Fi (each ω = 5sec corresponds to
150 accelerometer samples).

To further understand the trade-offs involved, we considered a
‘smarter’ processing strategy, where the Wi-Fi radio was normally
turned ‘off’ and turned on (for communicating with the server) only
at the end of a batch duration ∆. After the query processing and
communication is completed, the Wi-Fi radio is turned off again.
Figure 3 plots the average power consumed (measured by dividing
the total energy by the experiment duration of 30 mins) for each
of the 3 sensors, for ∆ = {5,15,60,300} secs. Note that, in our
experiments, the Wi-Fi radio takes ∼8-10 secs after turning on to
establish an IP link and then transmit the raw or processed con-
text predicates to the Coordination Server. Accordingly ∆ = 5 secs
corresponds to the case where the Wi-Fi radio is ‘always on’.

We note that average power is markedly higher (for the accelerom-
eter & GPS sensors) when ∆ = 15 secs. This occurs because, due
to the ‘turning on’ overheads, the Wi-Fi radio effectively runs at an
≈ 100% duty cycle, but also additionally incurs the cost of ‘IP con-
nectivity’ establishment once every 15 secs. For larger values of ∆,
this start-up cost is amortized by the savings achieved by turning
the Wi-Fi radio off, resulting in dramatically lower average power
consumption. For Wi-Fi and Accelerometer, large values of ∆ can
result in energy savings of ≈ 50−75%.

Note that the query processing logic (namely, the order in which
different sensor/predicates are conditionally evaluated) depends crit-
ically on this ‘average power’ (this defines the term Ci in Sec-
tion 4.1). Also note that our results are scenario-dependent: clearly,
the cost characteristics will vary, for example, if 3G/LTE is used
instead of Wi-F or if the radio interface is already ‘on’ for other
communication tasks. Accordingly, our key takeaway is that:
• Computing the ‘acquisition cost’ term Ci requires careful un-

derstanding of the sensor sensing vs. computation cost, as
well as the characteristics of the radio interface.

• To the extent permitted by the query latency tolerance limit
and the smartphone’s ‘normal’ traffic load, using a large value
of ∆ allows us to turn the radio off and significantly reduce
the energy overheads.

The use of large ∆ values (multiples of the evaluation period
ω) has implications for an enhanced version of ACQUA. For one,
while different evaluation instants could have different selectivity
properties (Pi), a larger ω implies a batched transfer process; hence,
the query optimization logic must now consider aggregate selectiv-
ity and cost metrics.

4.4 Single Smartphone Query Optimization
To now understand the benefits of query optimization, we next

explore the case of multiple executing queries, but pertaining to the
same smartphone. We consider two very simple, intuitive queries
(one conjunctive, one disjunctive):
• ‘User is walking 〈Accel〉 & Location in Lab 〈Wi−Fi〉’

56

0

10

20

30

40

50

60

70

80

D = 5 D = 15 D = 60 D = 300

A
v

e
ra

g
e

 P
o

w
e

r
(m

W
)

Batch Threshold (sec)

0

50

100

150

200

250

300

350

400

D = 5 D = 15 D = 60 D = 300

A
v

e
ra

g
e

 P
o

w
e

r
(m

W
)

Batch Threshold (sec)

0

10

20

30

40

50

60

70

80

D = 5 D = 15 D = 60 D = 300

A
v

e
ra

g
e

 P
o

w
e

r
(m

W
)

Batch Threshold (sec)

a) Accelerometer (L,L) b) GPS (L,L) c) Wi-Fi (L,L)
Experiments where the Wi-Fi is turned on (for data transmission) every ∆ secs. However, due to power on & off transients, the
Wi-Fi radio stays on all the time for ∆ = {5,15}secs.

Figure 3: Energy Costs with Different ∆ (Dynamic Activation of Network Interface)

Avg. Power (mW) Naive ’OR’ Query ’AND’ Query
∆ = 5 secs 74.5 65.8 38.8

Table 3: Energy Savings from Query Optimization

• ‘User is walking 〈Accel〉 ‖ Location in Lab 〈Wi−Fi〉’
We restrict our results to the case (L,L) with ∆ = 5 secs (results
for other cases are qualitatively similar). To study the impact of
using our query optimization strategy, we assumed that Pr(user
walking)= 0.2 & Pr(user in Lab)= 0.8 throughout the experiment
and computed the NAC values for each sensor accordingly. (In re-
ality, these probabilities would be predicted using models built on
historical context data). We then ran the query optimization logic
for these queries and compared the total energy consumed vs. a
‘naive’ approach, where both sensor predicates were always com-
puted and transmitted to the cloud. For the ‘AND’ query, we expect
the Accel sensor to be queried first (as it has a higher probability
of resulting in a ‘false’ predicate); the selection is reversed for the
‘OR’ query. Table 3 lists the observed average power consumption
values. We can see that a cloud-based query optimization algorithm
(for a single phone in isolation) results in about 60% energy sav-
ings for the ‘AND’ query (where the cheaper accelerometer sensor
is evaluated first) vs. only about 12% for the ’OR’ query. These
numbers would obviously vary, depending on the selectivity proba-
bilities for each of the predicates (which, in turn, would depend on
an individual’s activity statistics).

4.5 Multiple Queries on Multiple Phones
Having established the facts that a) different sensors have dif-

ferent communication vs. sensing overheads (and that these over-
heads depend on the choice of where sensing and computation is
performed), and b) using such different costs can help optimize
queries related to a single smartphone, we now consider the opti-
mization issues that arise in the Coordination Service for the case of
multiple queries running on multiple phones. We especially look at
the situation when each individual query involves predicates (sen-
sors) from different phones, with the same sensor (on a specific
phone) being involved in multiple queries.

To illustrate the possibilities, consider two queries (defined over
phones A & B) as follows (with Pr(A walking) =0.4 & Pr(A in Lab)
= Pr(B in Lab) =0.2).
• Q1: ‘User A is walking 〈Accel(A)〉 & User A’s Location in

Lab 〈Wi−Fi(A)〉’

Avg. Power (mW) Naive Optimized Optimized
(independently) (with NACmod)

∆ = 5 secs 136.5 136 99.34

Table 4: Multi-Query Optimization on Multiple Phones

• Q2: ‘User A is walking 〈Accel(A)〉 & User B’s Location in
Lab 〈Wi−Fi(B)〉’

In this case, if each query is viewed independently, we may end up
evaluating the ‘Wi-Fi’ predicates in Q1 &Q2 first. However, it is
easy to see that evaluating user A’s ‘Accelerometer’ predicate may,
in certain cases, be more effective–if this predicate is false, it helps
to abort two queries simultaneously.

While we do not dwell on the precise optimization enhancements
in this paper, one heuristic for tackling this problem is to modify
each predicates’ NAC value by dividing it by the number of queries
in which it appears: i.e., NACmod = NAC

NQ
where NQ is the number

of independent queries having the same predicate. This effectively
biases the optimization logic to consider the overlap of predicates
among multiple independent, concurrently running queries. We ran
the basic and enhanced query optimization logic on two phones
(corresponding to the users A & B) for the conjunctive queries
specified above. Table 4 plots the comparative avg. power con-
sumed by this enhanced logic vs. that consumed by independent
query optimization and the baseline ‘naive’ approach.

Our results show that optimizing each query independently actu-
ally results in almost no savings compared to the baseline approach
(even though the independent optimization previously suggested
energy savings of as much as 60%, when all queries pertained to
a single phone). On the contrary, optimizing the queries jointly re-
sults in almost 30% savings in energy. The reason for the poor per-
formance of an independent optimization strategy lies in its failure
to consider the statistical correlation across queries: in the inde-
pendent approach, where the Wi-Fi sensors for A &B are sensed
first, the Accel sensor for A will end up being sensed and evalu-
ated if the corresponding predicate fails to terminate either query.
The result illustrates the unique query optimization challenges and
opportunities that must be considered by our proposed cloud-based
Coordination Service.

5. RELATED WORK
Academic work that aligns most closely to our cloud-assisted

mobile sensing framework lies principally in two areas: continuous
sensing and collaborative processing.

57

Continuous sensing approaches improve the energy efficiency of
continuous sensing on a single device, primarily by dynamically
adapting individual sensing parameters (e.g., Jigsaw [4]), activat-
ing more expensive sensors only if less energy-hungry sensors sat-
isfy certain triggers (e.g., EEMS [9]) or by shifting computational
tasks between the device and the cloud (e.g., Kobe [3] or Socia-
bleSense [10]). The CasCap framework [10] suggests the use of a
device clone on the cloud to better coordinate the sensing and trans-
mission activities of a mobile device, by using appropriate global
context. All these approaches focus on a single mobile device and
not on optimizing across multiple mobile devices.

A limited set of recent approaches have explored the collabo-
rative processing paradigm, where multiple mobile devices share
or coordinate their sensing activity. The Darwin mobile sensing
framework [6] utilizes the sensing capability of multiple proximate
phones by building and exploiting distributed classifiers to over-
come the inaccuracies and errors of a single mobile device. The
ErDos framework [8] exploits collaboration among multiple nearby
devices to load-share the sensing burden (e.g., round-robin sharing
of GPS sensors) of shared ambient context. In contrast to these
approaches that focus primarily on ambient context, we aim to op-
timize more complex queries that are not just about ambient con-
text and that are not limited to a set of proximate mobile devices.
Moreover, we propose a centralized cloud-coordinated model that
optimizes multiple queries jointly.

6. CONCLUSION AND FUTURE WORK
We have articulated a vision of better coordination of ‘large-scale

mobile sensing’, driven by the observation that context is often
most useful when composed from the activity/ environmental state
of multiple individuals. Using a couple of simple examples, we
showed that a cloud-based Mobile Sensing Service may deliver ap-
preciable reduction in energy overheads (up to ≈ 30% in our stud-
ied cases), by intelligently optimizing the query processing across
multiple devices. Our results also shows why a stovepiped archi-
tecture (where each phone’s query is optimized separately) may not
provide the savings that are apparent at first glance.

In the near future, we plan to: (1) develop more sophisticated
query optimization logic (taking into consideration more involved
situations with multiple predicates) and (2) build and test out a
working version of our proposal, including the use of past history
to generate accurate estimates for the predicate selectivity proba-
bilities (P(. . .)).

7. REFERENCES
[1] PowerTutor: A Power Monitor for Android-Based Mobile

Platforms. http://ziyang.eecs.umich.edu/projects/powertutor/.
[2] Balan, R. K., Gergle, D., Satyanarayanan, M., and

Herbsleb, J. D. Simplifying cyber foraging for mobile
devices. ACM MobiSys, 2007.

[3] Chu et. al, D. Balancing Energy, Latency and Accuracy for
Mobile Sensor Data Classification. ACM Sensys’11, pages
54–67, 2011.

[4] Lu, H., Yang, J., Liu, Z., Lane, N. D., Choudhury, T., and
Campbell, A. T. The jigsaw continuous sensing engine for
mobile phone applications. ACM Sensys, 2010.

[5] McDaniel, P. On context in authorization policy. ACM
SACMAT, 2003.

[6] Miluzzo, E., Cornelius, C., Ramaswamy, A., Choudhury, T.,
Liu, Z., and Campbell, A. T. Darwin phones: the evolution of
sensing and inference on mobile phones. ACM MobiSys,
2010.

[7] Misra, A. and Lim, L. Optimizing Sensor Data Acquisition
for Energy-Efficient Smartphone-based Continuous Event
Processing. IEEE MDM, 2011.

[8] Vallina-Rodriguez, N. and Crowcroft, J. Erdos: Achieving
energy savings in mobile os. ACM MobiArch, 2011.

[9] Wang, Y., Lin, J., Annavaram, M., Jacobson, Q., Hong, J. I.,
Krishnamachari, B., and Sadeh, N. M. A framework of
energy efficient mobile sensing for automatic user state
recognition. ACM MobiSys, 2009.

[10] Xiao, Y., Hui, P., and Savolainen, P. Cascap: Cloud-assisted
context aware power management for mobile devices. ACM
MCS, 2011.

58

