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Abstract—Many active research studies in software engineer-
ing, such as detection of recurring bug fixes, detection of copy-
and-paste bugs, and automated program transformation tools,
are motivated by the assumption that many code changes (e.g.,
changing an identifier name) in software systems are widespread
to many locations and are similar to one another. However, there
is no study so far that actually analyzes widespread changes
in software systems. Understanding the nature of widespread
changes could empirically support the assumption, which pro-
vides insight to improve the research studies and related tools.

Our study in this paper addresses such a need. We propose a
semi-automated approach that recovers code changes involving
widespread changes in software systems. We further manually
analyze more than nine hundred widespread changes recovered
from eight software systems and categorize them into 11 families.
These widespread changes and their associated families help us
understand better why these widespread changes are made.

I. INTRODUCTION

During software evolution, many similar changes can be
made to various locations within a software system together.
For example, refactoring code that changes an identifier name
may need to change many places in the code that use the
name. Also, similar bugs may happen at different locations
in a program and fixing them requires changes to all of
these locations. We refer to such a phenomenon that similar
code change may appear in many locations in a program
as widespread changes. Many past studies have leveraged
widespread changes for various purposes. Work on recurring
bug fixes [36], [44] leverages the fact that bug-fixing changes
may repeatedly occur in different locations at different time to
automatically detect possible bugs and suggest fixes. Studies
on copy-paste bug detection [28], [39] investigate bugs oc-
curred in similar pieces of code based on the assumption that
similar code should evolve in a similar way and inconsistencies
among similar code would be an indication of bugs. Many
other studies and tools are motivated by this phenomenon
as well, such as studies on code refactoring [14], automated
code search [41], [55], [59], and program transformation and
synthesis [50], and they often aim to detect pieces of code that
need to be created or changed in a similar way. Despite the
proliferation of studies that rely on such a phenomenon and
its impact to existing research, few studies have focused on
the understanding of widespread changes themselves.

In this paper, we aim to fill the gap and provide better
understanding of the nature of widespread changes by an-
swering questions like how often widespread changes occur

in a program and what types of widespread changes there
are. We propose an approach that can semi-automatically
detect widespread changes within the same program versions,
and perform an empirical study on more than nine hundred
detected widespread changes to understand possible reasons
that cause widespread changes to occur.

To detect these widespread changes, we perform a multi-
step semi-automated approach involving: data collection and
filtering, clone mining, and manual identification. In the data
collection step, we extract thousands of revisions from var-
ious software systems. For each revision, we perform a diff
operation with the immediate revision prior to it to find the
lines of code that are changed. In the filtering step, we remove
code changes that contain too many or too few lines of code.
In the clone mining step, we rely on code clone detection
to recover syntactically similar changes in each revision that
occur a sufficient number of times and spread across a number
of files. In the manual identification step, we inspect the
detected syntactically similar changes and flag those that are
widespread ones by using the following criterion: the changes
should be semantically similar or related; in other words, they
must be made to achieve a similar or related goal, for example,
fixing the same kind of bugs at multiple locations.

To understand the widespread changes, we perform addi-
tional analysis to categorize them into various families. Based
on possible reasons that cause the changes to occur, we group
them into 10 families, including argument addition/removal,
argument change, method addition, method change, data
structure, external change, non-functional, feature addition,
algorithm change, and bug fix. For completeness, we also
include another family others that captures everything else.

We analyze more than 32,452 revisions from eight software
systems, including ArgoUML [1], Columba [2], Lightweight
Java Game Library [5], JFreeChart [4], MegaMek [6], PDF
Split and Merge [7], Tight VNC [8], and JEdit [3]. The systems
are small to large open source software ranging from 30,427
lines of code (LOC) to 382,740 LOC. Out of these 32,452
revisions, we detect more than 965 widespread changes and
categorize them into families. We find that non-functional
widespread changes are the most common followed by feature
addition, algorithm change, and bug fix.

Our contributions are as follows:

1) We highlight the importance of understanding

widespread changes and its impact to many software



Widespread .
Data Collection > Change Widespread
Detection Changes

Widespread Classified
Repositories > Change | Widespread
Classification Changes

Fig. 1. Overview of Our Approach

engineering studies.

2) We propose a semi-automated approach to recover many
widespread changes from software systems.

3) We manually investigate 965 detected widespread
changes from eight software systems and classify them
into 11 categories. The categorization gives insights
on the reasons that cause these widespread changes to
occur.

This paper is structured as follows. We discuss our overall
methodology in Section II and zoom into major steps of our
methodology in Sections III, IV, and V. We present the results
of our empirical study in Section VI. We discuss related work
in Section VII. Section VIII concludes with future work.

II. APPROACH OVERVIEW

In order to gain insights into widespread changes, we
propose an approach to collect many widespread changes
from software repositories. Based on the intuitive definition
of widespread changes, this section introduces our approach
for collecting raw data about code change histories, detecting
widespread changes, and classifying the changes.

Our rationale for the semi-automated approach is based
on the intuitive definition of widespread changes: widespread
changes are the code changes that are (syntactically and
semantically) similar to one another and occur at different
locations in a program. As the software version control sys-
tems often record all of the code changes made to a program,
it is thus possible to recover widespread changes from the
software repositories by searching for similar code changes in
the code change history.

The major steps in our approach are shown in Figure 1.
The process first accesses the repository of a given program,
and extracts all of the commits made to the repository. Then,
a semi-automated step based on code clone detection is used
to search for similar changes among the commits. Heuristics
are also applied to filter out changes that are unlikely to
be widespread changes. After the semi-automated step on
detection of widespread changes, we carry out further manual
investigation of the detected widespread changes and classify
them into various categories to facilitate understanding.

The following Sections III, IV, and V describe each of these
steps in more details.

III. COLLECTION OF RAW DATA

The major task for this step is to retrieve the code change
histories from the revision control systems (e.g., git' and
subversion®) of desired programs. Since we mainly look for
changes, it is sufficient for our approach to collect just the
diff 3 between every two revisions that may contain the desired
changes.

In this study, we look at the changes between every
consecutive revisions. This ensures that the overall process
includes fine-grained changes. In cases when changes at a
larger granularity are desired (e.g., the changes between major
releases of a program which may contain many changes from
many revisions), our approach may be adjusted to take the diff
between the major releases as input and possibly detect less
but larger widespread changes.

The collection of change history from a repository is often
straightforward by using the commands available from the
revision control systems and a set of scripts to automate
the collection process. For example, for subversion repos-
itories, we use svn checkout svn://somepathQr
working-directory to retrieve a particular revision, and
svn diff -r rl:r2 to getthe diff between two revisions.
For each diff, it is often comprised of a set of change hunks*
each of which represents a region that is changed in a file in
a project as a set of added lines and a set of deleted lines.
Each change hunk is often shown together with some number
(three by default) of unchanged lines above and below the
added and deleted lines; these unchanged lines are also often
referred as the surrounding contexts of the change hunk. Each
change hunk, together with its surrounding contexts, is called
a hunk.

While the general term change refers to changes at any
granularity (e.g., byte changes, token changes, etc.), hunks
usually use lines as the granularity for representing changes. In
this paper, we view hunks as sequences of token-level changes.
One hunk may contain the same changes as the other, in which
case we say the hunk is the same as the other; or only a subset
of all changes contained in the hunk is the same as another
subset of all changes contained in another hunk, in which case
we say the hunk is partially the same as or similar to the other
hunk. Such similarity measurements among hunks are the basis
for our detection of widespread changes in program revisions
(cf. Section IV).

The actual programs and their repositories that we have col-
lected for our study in this paper are detailed in Section VI-A.

IV. DETECTION OF WIDESPREAD CHANGES

Based on the intuitive definition of widespread changes (cf.
Section II), we propose four criteria for a set of hunks to be
considered as a widespread change:
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3GNU Diffutils: http://www.gnu.org/software/diffutils/
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1) Each hunk should be of a relatively small size consider-
ing that many common real-world widespread changes
(e.g., changing an identifer name, changing a method
interface) are small.

2) The code involved in the hunks should be syntactically
similar to one another; i.e., the hunks are meant to
contain similar changes made in a similar way.

3) The code involved in the hunks should spread over
multiple locations and files; i.e., the changes made in
the hunks should repeatedly appear in various places.

4) The code involved in the hunks should be semantically
similar to one another; i.e., the hunks are meant to
address the same or similar issues in a program.

The criteria enable us to design a semi-automated technique
to detect many widespread changes as follows so as to
scale up our study. The flowchart describing the detection
process is shown in Figure 2. Given the diff files containing
the difference between every two consecutive revisions (cf.
Section III), our detection component would eventually output
the widespread changes, if any, existing in the diff files. During
the process, (i) our technique first extracts the hunks, including
the changed code and the code surrounding the change hunk
(i.e., the code three lines before or after every line of changed
code), from each diff; (ii) then the extracted code is fed
to a code clone detection tool to find syntactically similar
code fragments, which could be considered as candidates for
widespread changes; (iii) and filter out changes that do not
occur in a sufficient number of places; (iv) finally we manually
examine the filtered outputs from the clone detection tool and
remove changes that are semantically irrelevant.

The step (i) takes the criterion (1) into consideration and
ignores hunks that contain more than maxHunkSize lines
of code. In this paper, by default we set the parameters
marHunkSize to be 20 lines. Since as our observation, very
rare widely changes appear in the hunk which is more than
20 lines.

The step (ii) takes the criterion (2) into consideration and
only keeps code hunks that are syntactically similar to others
(i.e., the hunks contain similar changes to others). This step
involves measuring similarity among code fragments and can
be naturally achieved by a code clone detection tool.

Code clones (i.e., pieces of code with similar appearance)
are believed to exist ubiquitously in software systems. Many
code clone detection techniques and tools have been devel-
oped [9], [10], [15], [25], [29], [40]. A code clone detection
tool in general works as follows: it converts a given set of
pieces of code into certain intermediate representations (e.g., a
sequence of tokens, a sequence of hash values, a set of feature
vectors capturing the essential code characteristics, etc.), looks
for similar intermediate representations with various tech-
niques, and thus find similar code. Based on the intermediate
representations used, the tools can be classified into string-
based [9], token-based [29], tree-based [10], [25], graph-
based [15], etc. Tree-based or graph-based tools often require
complete and compilable code, while the code considered
in our setting is the hunks from diffs that may not be syn-
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Fig. 2. Detection of Widespread Changes.

tactically complete. Token-based approaches are often more
robust than string-based approaches against non-essential code
differences such as formatting and spacing changes. Thus, in
our study, we choose to use a token-based clone detection
tool, CCFinder [29], to detect clones (i.e., syntactically similar
code changes in our setting) among hunks. In particular, when
using CCFinder, we set the minimum length of the detected
code clones to be 10 tokens, and set the minimum number
of kinds of tokens in input code fragments to be 6. At the
end of the step (ii), CCFinder reports groups of syntactically
similar code fragments (a.k.a. clone groups) from different
hunks. These groups of code fragments are thus the candidates
for widespread changes. Since CCFinder may report a partial
hunk in a clone group, we can see that a widespread change
detected by our approach is a set of hunks or partial hunks.

In the step (iii), we take the criterion (3) into consideration:
a widespread change should occur in more than minLoc
locations across minFile files. Thus, if a group of syntactically
similar code changes reported by CCFinder (i.e., a clone
group) involves code changes from less than minLoc hunks
or less than minkFile files, we also remove it. In this paper,
by default we set the parameters minLoc and minFile to be
5 and 3 respectively as the setting in [47].

The step (iv) takes the criterion (4) into consideration and
only keeps a clone group if the code changes involved in
the group are semantically similar or related to each other.
Although there are some clone detection tools aiming for
detecting semantic or functional similar code [15], [27], their
settings may not be suitable for us. To reduce possible falsely
identified widespread changes, we choose to manually inves-
tigate all of the syntactically similar code changes reported
by the step (iii) and use human judgments to decide whether
each group of syntactically similar code changes is also
semantically similar or related, and only keep the groups of
code changes that we can determine to be semantically similar
or related to each other by investigating their surrounding
codes and understanding their usage context.

Note that in the step (ii), we focus on detecting widespread
changes that occur within the same revision. This means that
we apply the code clone tool to the hunks from each revision
separately from the hunks from other revisions. It will be
straightforward to extend our approach to detect widespread



TABLE I
CATEGORIES OF WIDESPREAD CHANGES.

Types of widespread | Description

changes

Argument Addition Add or drop argument(s) for a method.
/Removal

Argument Change Change the value, type, name of the argumen-
t(s) for a method.

Extract a piece of codes to be a method, or add
methods to get or set variables.

Change the name, access control, return type
for a method or change deprecated methods.
Change the name, access control or the field
of data structure, or change the data structure
to be used(e.g., Change map to set).

An addition/implementation of a new feature.
Algorithm or implementation change.

The change caused by the change of external
dependent library or interacting system.

Other kinds of code changes that do not
change the code functionalities, documentation
change, comment change, or fix warnings.

Method Addition

Method Change

Data Structure

Feature Addition
Algorithm Change
External Change

Non Functional

Bug Fix Fix a bug. It includes all kinds of code changes
that are made for the purpose of fixing a bug.
Others Except above categories.

changes across multiple revisions by applying the code clone
tool to the combined set of hunks from all revisions.

V. CATEGORIZATION OF WIDESPREAD CHANGES

After running the detection component described in Sec-
tion IV, we obtain many widespread changes. In this step, we
would like to facilitate the understanding of the widespread
changes by manually classifying them into various categories
based on the reasons that cause them to occur.

Firstly, in order to create the categories, one of our authors,
who has five years Java programming experience, manually
look into all code corresponding to the widespread changes.
We also investigate comments in the commit logs which give
us additional insights on why those changes are made. After
a number of iterations, we come up with 10 categories based
on our understanding of the reasons for the code changes:
argument addition/removal, argument change, method addi-
tion, method change, data structure, external change, non-
functional, feature addition, algorithm change, and bug fix.
Also, we use another category others for all of the widespread
changes that do not fit any one of the above 10 categories.

The 11 categories are shown in Table I with their de-
scriptions. The first seven categories are related to addition,
removal, or change of arguments, methods, data structures,
features, or algorithms. The other remaining categories cor-
respond to changes that are due to an external change (e.g.,
a change in a commonly used API), non-functional changes,
bug fixes, and others.

Secondly, after the above categories are created, we tag
each of the widespread changes with the categories. For
each widespread change, it is possible that more than one
category can apply. In such cases, we pick one category that
is the best fit for the change based on our human judgement.
Section VI-E shows various sample code changes belonging to

some categories together with our empirical evaluation results.

VI. EMPIRICAL EVALUATION

In this section, we first describe the datasets and our
experimental settings. We then present our research questions
and the answers. Finally, we present some threats to validity.

A. Datasets

By using the method described in Section III, we
collect code change histories for eight open source
projects from Sourceforge’ including: ArgoUML [1], Colum-
ba [2], Lightweight Java Game Library [5], JFreeChart [4],
MegaMek [6], PDF Split and Merge [7], TightVNC [8],
and JEdit [3]. The projects are listed in Table II. All of
them are at least 5 years old and use Subversion® as their
version control systems. These projects implement various
functionalities ranging from email clients to games to editors,
etc. Each of them has a relatively large user base.

For each of the eight programs, we collect revision infor-
mation from their respective code repositories. The number of
revisions we collect for each program is listed in Table III. The
table also shows the time period during which the revisions are
made. The average number of revisions per program is 4,057.
The sizes of the revisions that we collect for each program
range from 18.5 MB to 1.18GB, and the average size across
all programs is 330 MB.

TABLE III
NUMBER OF REVISIONS FOR EACH PROGRAM.

Project # Revisions | Period

ArgoUML [1] 7170 | 01/01/2007-09/05/2012
Columba [2] 458 | 09/07/2006-09/07/2011
Lightweight Java Game Library [5] 3777 | 24/07/2002-04/06/2012
JFreeChart [4] 2468 19/06/2007-13/06/2012
MegaMek [6] 8806 | 21/02/2002-09/05/2012
PDF Split and Merge [7] 1173 | 03/01/2007-06/03/2012
TightVNC [8] 2813 | 08/10/2004-22/04/2010
JEdit [3] 5797 | 27/07/2006-07/05/2012

We have implemented our approach in various scripts writ-
ten in Java, and performed our study on a workstation with
an Intel Core 17 3.3GHz CPU installed with 6GB of memory
and 700GB of hard disks.

B. Research Questions

With the above collected datasets, we investigate the fol-
lowing research questions in order to get better understanding
of widespread changes:

RQ1 How accurate is our clone detection based ap-
proach in recovering widespread changes?

RQ2 How frequent do widespread changes occur dur-
ing software development and maintenance?

RQ3 What are the various types of widespread

changes?

Shttp://sourceforge.net/
Shttp://subversion.apache.org/



TABLE II
PROJECTS INVESTIGATED IN THIS STUDY.

Project Description Lines of Code in | Language
the latest revision
ArgoUML ArgoUML is a free and feature-rich open source UML modeling tool 369,427 Java
which support for latest UML standard.
Columba Columba is a powerful email management tool which has a friendly 194,125 Java
graphical interface with wizards.
Lightweight Java Game Library | A Java Game Library extension which allow developers to easily develop- 138,198 Java
er 2D or 3D games by accessing high performance crossplatform libraries
such as OpenGL, OpenCL and OpenAL.
JFreeChart JFreeChart is a free (LGPL) chart library written in Java. 327,865 Java
MegaMek MegaMek is a open source, network Classic BattleTech board game. 382,740 Java
PDF Split and Merge PDF Split and Merge is a tool to allow user to merge and split pdf 30,427 Java
documents easily.
TightVNC TightVNC is a great free remote-desktop tool which allows to remote 74,468 Java, C, C++
network access to graphical desktops.
JEdit jEdit is a mature and powerful programmer’s text editor. 183,280 Java
C. RQI: Accuracy of Clone-Based Approach //@3/ fUtLHetaClassConboBoxtodel-135. java
+ if (Hodel.getFacade().isATagbefinition{t}} {
In our approach, we have both automated and manual
parts. The automated part makes use of a clone detection //@2//UHLHodelElenentNamespaceConboBoxHodel-172.java
. L. + if (Model.getFacade{).isAHamespace{o}} {
tool to detect syntactically similar code changes spread at . if (Model.getFacade().isAGeneralization(o)) {

multiple locations in multiple files. These automatically de-
tected changes are then subject to manual inspection to see
if they are semantically similar or not. In our first research
question, we are interested in investigating the accuracy of the
automated part of our approach. In effect, we are answering
the following question: How many syntactically similar code
changes automatically detected from multiple locations in
multiple files are also semantically similar?

In this study, the automated part of our approach returns
999 syntactically similar groups of hunks or partial hunks.
We manually inspect all of the 999 groups and find that 965
of them are semantically similar and are thus widespread
changes. Thus, the accuracy of the automated part of our
approach is 96.66%, which is very high. This justifies the use
of a code clone detection tool in reducing efforts in the manual
parts in our approach. However, note that we limit our clone
detection to syntax-based clones of relatively small sizes; it
would be interesting future work to investigate the effects of
larger clones and tools that could detect semantic clones [15],
[27], [33] on detecting widespread changes.

An example of such inaccuracy is shown in Figure 3. The
group of clones shown are syntactically similar but they are
not semantically similar. For this example, we can see that
these clones all contain common terms Model and getFacade
and if statements, but they use if statements to check different
things which means they are not semantically similar.

D. RQ2: Frequencies of Widespread Changes

We analyze a total of 32,452 revisions from the eight
software systems. We detect 965 widespread changes. Thus,
not all revisions contain a widespread change, and on average
there is one widespread change in every 34 revisions. In total,
there are 502 revisions that contain at least one widespread
change. Each revision contains at most 11 widespread changes.

The number of widespread changes for each software
system is shown in Table IV. We notice that the absolute

/ /@7 /UMLGeneralizationPowertypeComboBoxHodel-158. java
+ if (Hodel.getFacade{}.isAClassifier{o}) {

A/ /UHLLinkAssociationComboBoxHodel-148 . java
+ if (HModel .getFacade().isAAssociation{n)) ¢

/£ /@37 /UHLLinkAssociationComboBoxHodel-148. java
+ if (Model.getFacade().isALink(o)) {

//@a7 /UHLMetaclassConboBoxModel-135. java
+ if (Model.getFacade{).isATagbefinition{t)}} {

/ /@7 /UMLModelElementNamespaceComboBoxModel-172 . java
+ if (Hodel.getFacade{)}.isAMamespace{o}} {

Fig. 3. Syntactically but not Semantically Similar Changes

numbers of widespread changes in different software systems
differ a lot, ranging from 2 to 484, and the proportion of
revisions containing widespread changes in each system also
differs from 0.04% to 10.82%. We see that JFreeChart has the
highest number of revisions containing widespread changes,
and that TightVNC has the lowest number of revisions con-
taining widespread changes. The pie chart in Figure 4 further
illustrates the proportions of widespread changes contained
in each program with respect to the total number (965) of
widespread changes.

E. RQ3: Types of Widespread Changes

In Table I, we list all types of widespread changes and
their corresponding descriptions. We manually investigate each
of the 965 widespread changes and assign each of them
into one of these categories. Table V shows the numbers of
widespread changes belonging to various categories. The pie
chart in Figure 5 further shows the percentage of widespread
changes for each category. Only 1 (0.1%) of the widespread
changes belong to the category of others. This shows that our
10 categories are comprehensive enough in capturing many



TABLE IV
NUMBERS OF WIDESPREAD CHANGES PER SOFTWARE SYSTEM

Software System # Widespread | # Revisions Containing % of Revisions Containing

Changes Widespread Changes Widespread Changes
ArgoUML 127 70 0.98%
Columba 8 4 0.87%
Lightweight Java Game Library 49 26 0.69%
JFreeChart 484 267 10.82%
MegaMek 255 110 1.25%
PDF Split and Merge 24 11 0.94%
TightVNC 2 1 0.04%
JEdit 16 13 0.22%

PDF Split and
Merge, 2.5%

TightVNC, 0.2%

Columba, 0.8%

Lightweig
ht Java
Game
Library,
5.1%

JEdit, 1.7%

Fig. 4. Proportion of widespread changes contained in each program.

different kinds of widespread changes.

TABLE V
NUMBERS OF WIDESPREAD CHANGES PER CATEGORY.

Types of widespread changes | Numbers of widespread changes
Argument Addition/Removal 34
Argument Change 20
Method Change 25
Data Structure 68
Non Functional 487
Feature Addition 113
Algorithm Change 96
Method Addition 41
External Change 4
Bug Fix 76
Others 1

We find that widespread changes belonging to the non-
functional category dominate the distribution (50.4%). An
example of this kind of widespread change is shown in
Figure 6. We just show one of the many changes spread in
many files. It shows a change to the comments of classes
related to Decorator.

Aside from the non-functional category, the next three
largest categories of widespread changes in our dataset are
feature addition, algorithm change, and bug fix. We show
an example of a widespread change involving each of these
categories in Figures 7, 8, and 9 respectively.

Figure 7 shows a feature addition widespread change which
appears in several locations. The developer of Megamek, a
game application, added a new feature (i.e., a new ammo type)
and thus needed to add the new conditions into related if

Argument

Others, 0.1%
Addition/Removal, 3.5%

External Change,
0.4%

Argument Change, 2.1%

Method Change, 2.6%
Method Addition, 4.2%

Fig. 5. Proportion of widespread changes in each change category.

fn

+ % This Decorator is responsible for generating commands for any

This Decorator is responsible for generating mementos for any

*
=
*
*
*= Rauthor Linux Tolke|

Fig. 6. Example of Non-Functional Widespread Change from ArgoUML

statements in multiple places. Figure 8 shows an algorithm
change widespread change. It appears in a number of locations
and describes an additional else branch being added to change
the behavior of the algorithm. Figure 9 shows a fix of a bug
occurring in many locations that involves a file not being
closed after it is no longer used.

}Yelse if({useAmmo
+ && ((atype.getAnmoType() == AmmoType.T_AC_LBX)
+ |1 (atype.getAmnoType{) == AmmoType .T_AC_LBX_THB)}})
= && (atype.getAmmoType{) == AmmoType.T_AC_LBX}

Fig. 7. Example of Feature Addition Widespread Change from Megamek
Aside from others, the least common families of widespread
changes are external change, argument change, and method
change. We show an example of a widespread change for each
of these categories in Figures 10, 11, and 12 respectively.
Figure 10 shows an external change widespread change



if (dataFile.exists{"armor_type"}) {
a.setArmorType{dataFile.getDatafsInt({"armor_type")[0]);
+ ¥ else {
+ a.setArmorType{EquipmentType .T_ARHOR_STANDARD};
H

Fig. 8. Example of Algorithm Change Widespread Change from Megamek

finally
{
loading = false;
try
{
if{in *= null)
in.close();

catch{I0Exception io)

{
Log.log{Log.ERROR ,Registers.class,io);

R T R

¥
Example of Bug Fix Widespread Change from PDF Split and Merge

3!
a2
o

that is caused by an upgrade in JUnit 4. Many places in the
code need to change the called API (assertEquals) in
the same way. Figure 11 presents one change from a group
of changes that add a modifier (final) to the arguments of
various methods. Figure 12 shows a widespread change caused
by the change of a method name. This change needs to be
made at various locations that invoked the same method (i.e.,
getDefaultWorkingDir).

For{int i =0; i < vi.size(); i++)
+ Assert.assertEquals{{String) vi.get(i),
(String) v2.get(i));
- assertEquals{{String) vi.get(i},
(String) v2.get(i));
H

Fig. 10. Example of External Change Widespread Change from Columba

+ public RotateException{final int exceptionErrorCode,
final Throwable e} {
= public RotateException{int exceptionErrorCode,
Throwable e} {
super{exceptionErrorCode, e);

H

Fig. 11. Example of Argument Change Widespread Change from PDF Split
and Merge

config = Configuration.getInstance(};
+ fileChooser = new JFileChooser(
config.getDefaultWorkingDirectory(l);
new JFileChooser(
config.getDefaultWorkingDir()};

Example of Method Change Widespread Change from PDF Split

- fileChooser =

Fig. 12.
and Merge

In Table VI, we list the average number of LOC involved
in one widespread change for each category. We notice that,
aside from widespread changes from the category others, a
non-functional widespread change involves the highest number
of lines of code on average (i.e., 43.2 lines). Bug fix is the
next category with the highest number of lines of code per
widespread change (i.e., 31.3 lines). Categories involving the
least numbers of lines of code per widespread change are
method change (11.7 lines), and external change (8.4 lines).

In Figure 13, we present how much each program con-
tributes to each family of widespread changes. Figure 13(a)
shows the numbers of widespread changes from each program

TABLE VI
AVERAGE LINES OF CODE PER WIDESPREAD CHANGE FOR EACH
CHANGE CATEGORY.

Types of widespread changes | Avg. Lines of Code
Argument Addition/Removal 19.7
Argument Change 16.4
Method Change 11.7
Data Structure 20.9
Non Functional 43.2
Feature Addition 30.5
Algorithm Change 22.3
Method Addition 31.1
External Change 8.4
Bug Fix 31.3
Others 50

for each family of widespread changes, while Figure 13(b)
shows the corresponding percentages.

We can see that most argument addition/removal changes
are from Megamek and ArgoUML. Most argument change
changes are from Megamek. Most method addition/removal
changes are from Megamek. Most method change changes
are from PDF Split and Merge and ArgoUML. Most data
structure changes are from ArgoUML and Megamek. Most
non-functional changes are from JFreeChart. Most feature
addition changes are from Megamek. Most algorithm change
changes are from Megamek and JFreeChart. Most external
change changes are from Columba. Most bug fix changes are
from Megamek. All other changes are from Columba.

Three software systems deserve further mentioning.
Megamek contributes the most to most families of widespread
changes with a few exceptions: method change,
functional, external change, and other. PDF Split and
Merge dominates method change. JFreeChart dominates non-
functional and there are many (386 changes) such changes in
JFreeChart. Columba dominates external change and other.

non-

F. Discussion

1) Frequency of Widespread Changes: We note that we
could find 965 widespread changes from more than 30,000
revisions. Although there are many widespread changes, many
revisions do not include widespread changes. Also, the fre-
quencies of widespread changes occurring in the revisions of
various software systems vary widely from 0.04% to 10.82%.
Many tools proposed in the literature, such as automatic bug
fixing via recurring bug fix detection (e.g., [44]) and bug
detection via inconsistent code clone detection (e.g., [26]), rely
on the phenomenon of widespread changes to some extent. It
is unclear if these tools remain effective on programs with a
low number of widespread changes. It would be interesting to
investigate the correlation between the numbers of widespread
changes and the effectiveness of these tools in the future. It
also would be interesting to investigate the correlation between
the numbers of widespread changes and various characteristics
(e.g., project sizes, numbers of developers involved) of the
subject programs as well in the future. We note that we may
have not detected all widespread changes in the projects due
to the settings of our detection approach; it is also valuable
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future work to estimate the recall rates of our approach and
further confirm the implications of our results.

2) Prevalence of Non-Functional Widespread Change: We
note that there are many widespread changes that are non-
functional. These non-functional changes numbered to 487
out of 965 widespread changes that we collect (50.5%). This
points to the need to maintain these non-functional changes.
We believe not only code clones need to be maintained [12],
[23], [45], but these and yet pervasive changes to non-
functional code or even non-code (e.g., documents and com-
ments) need to be similarly maintained too. Poor comments
could lead to bugs as future developers and system maintainers
could make wrong assumptions based on outdated comments.
Tan et al. have shown that discrepancies between comments
and code could be used to find bugs [53], [54]. Other studies
also show that some comments include licensing information
and it is important to manage licensing information well [16],
[17].

3) Types of Widespread Changes: There are many different
types of widespread changes which potentially need different
tools to handle. Past studies on program transformations have
primarily focused on bug fixes [38] and external changes [46].

Contribution of Each Program to Each Family of Widespread Changes

It would be interesting to investigate the extent to which these
tools are applicable to other types of widespread changes and
identify the issues for improvements.

G. Threats to Validity

Threats to internal validity includes experimenter bias. We
manually inspect each structurally similar code change and
decide if it is semantically similar or not. We might make
some mistakes in the process. We also manually categorize
each widespread change to one out of the 11 categories. Again,
there might be some bias and error in this manual process.

Threats to external validity refers to the generalizability of
our findings. We have analyzed 8 software systems. These
systems implement a wide range of functionalities. We have
analyzed more than 30,000 revisions and manually analyzed
nearly one thousand widespread changes. Also, in this study,
we focus on detecting widespread changes that occur within
the same revision. In the future, we plan to investigate even
more revisions from more software systems written in various
programming languages.

Several threats to construct validity are related to our
definitions of widespread changes and the 11 categories of
widespread changes. In this work, we provide one definition



and one approach of detecting widespread changes. In future,
we would like to investigate different kinds of definitions and
approaches for detecting widespread changes. We use a set
of fixed parameter values for our semi-automated widespread
change detection approach, e.g., number of surrounding lines,
number of lines changed, number of files affected, minimum
number of tokens in detected code clones, minimum number of
kinds of tokens, etc. Other parameter values could be used and
we plan to investigate them in the future. In this work, we have
decided 11 different categories of widespread changes. There
might be better categorization. We plan to investigate different
categorizations considering different granularity levels in the
future. One possibility is to consider the different kinds of
refactoring patterns’.

VII. RELATED WORK

In this section, we present closely related studies on code
commits, software evolution, and code clones.

A. Studies on Code Commits

Our study investigates the source code (including com-
ments) changed between two continuous versions of programs.
It is different from many other studies that investigate different
aspects of code commits. Hindle et al. perform a taxonomical
study on large commits that involve many files [22] and
propose an approach to automatically classify large changes
into maintenance categories [21]. Kawrykow and Robillard
look for non-essential changes in code commits [31]. Pham et
al. [48] search for recurring bugs in software that gets reused.
Wau et al. [60] propose an approach to automatically link code
changes with corresponding bug reports together. Eyolfson et
al. [13] find that the time and day of a code commit may
affect the quality of the code. Murphy-Hill et al. [42] use a
large scale study on refactoring changes and find that many
refactoring changes are mixed with others and may not be
clearly stated in commit logs.

B. Studies on Software Evolution

There are many studies on software maintenance and evolu-
tion and how they relate to software quality and productivity.
Posnett et al. [51] investigate how new features and code
improvements affect defects. Zhu et al. [62] propose the
use of deviations of software modularity to monitor quality.
Hammad et al. [19] use lightweight analysis and syntactic code
differencing to determine how a code change would impact
the system design. Xing and Stroulia investigate software
evolution in Eclipse to analyze refactoring efforts [61]. They
find that current tool support is not sufficient for complex
refactorings. Kim et al. investigate API refactorings when
software evolves over time [34]. They find after refactorings
the number of bug fixes increases but the time taken to fix
bugs decreases. Padioleau et al. analyze Linux device drivers
and detect changes in drivers code that are due to changes
in the kernel interfaces (a.k.a. collateral evolutions) [47].
Van Rysselberghe et. al. were among the first to investigate

http://www.refactoring.com/catalog/index.html

changes due to move operation by using a clone detector on
code diffs [57]. Xing et al. present an approach for detecting
refactorings based on information of system evolution at the
design level. Different from their approach, our approach is
based on the information at the source code level.

C. Studies on Code Clones

As briefly mentioned in Section IV, code clones have
been widely studied in the literature. There are various kinds
of clone detection techniques, based on similarities among
strings, tokens, syntax trees, dependency graphs, and even
program memory states and functionalities [9], [10], [29], [32],
[33], [37], [40], [49], [56], [58]. With the evolving software,
there are also studies aiming to detect clones incrementally
and improve the clone detection efficiency when programs
change [18], [20], [43].

Clones are traditionally thought as harmful, and techniques
have been proposed to reduce clones [24], [52]. On the
other hand, some studies show that clones can be useful
and necessary [30], [35]. Then, instead of reducing clones,
some studies investigate techniques to track and manage code
clones [12], [23], [45]. Our work is also related to many studies
on clone evolutions. Kim et al. [35] investigate how clones
change across program versions. Cai and Kim [11] extend the
work by studying long-lived clones and identify factors that
may affect the survival time of clones.

Different from the above studies, our work studies clones
residing within the changed code from one revision, instead
of clones residing in the whole code base of a program. We
focus on detecting and classifying widespread changes which
is a different kind of phenomenon from clones themselves.

VIII. CONCLUSION AND FUTURE WORK

Many studies in software engineering including recurring
bug fixes, detection of copy-paste bugs, automated program
transformations, code search, and many more are motivated
by the assumption that many code changes are similar to one
another and are spread across many locations. We refer to this
phenomenon as widespread changes. In this work, we propose
a semi-automated approach to recover widespread changes
from program revisions. We also analyze these widespread
changes and create a categorization consisting of 11 different
families of widespread changes. We group the changes into
these families and present the distribution of these families
of widespread changes across 8 software projects. In total
we analyze more than 30,000 revisions and manually analyze
almost a thousand changes manually.

We find that widespread changes occur many times —
965 of them out of the 32,452 revisions that we analyze.
Although many, they are a small proportion of the revisions.
This highlights the need to investigate the applicability of
many techniques that rely on widespread changes on software
systems, in which widespread changes are not observed. We
also find that the most common family of widespread changes
is non-functional changes followed by feature addition, algo-
rithm change, and bug fix. It would be interesting to investigate



the applicability of various program transformation tools in
helping with each family of widespread change and design
better support for developers in performing the most common
widespread changes in the future.
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