
TopicSketch: Real-time Bursty Topic Detection from Twitter

Wei Xie, Feida Zhu, Jing Jiang, Ee-Peng Lim
Living Analytics Research Centre
Singapore Management University

{wei.xie.2012, fdzhu, jingjiang, eplim}@smu.edu.sg

Ke Wang
Simon Fraser University

Singapore Management University∗

wangk@cs.sfu.ca

Abstract—Twitter has become one of the largest platforms
for users around the world to share anything happening around
them with friends and beyond. A bursty topic in Twitter is one
that triggers a surge of relevant tweets within a short time,
which often reflects important events of mass interest. How
to leverage Twitter for early detection of bursty topics has
therefore become an important research problem with immense
practical value.

Despite the wealth of research work on topic modeling and
analysis in Twitter, it remains a huge challenge to detect bursty
topics in real-time. As existing methods can hardly scale to
handle the task with the tweet stream in real-time, we propose
in this paper TopicSketch, a novel sketch-based topic model
together with a set of techniques to achieve real-time detection.
We evaluate our solution on a tweet stream with over 30
million tweets. Our experiment results show both efficiency and
effectiveness of our approach. Especially it is also demonstrated
that TopicSketch can potentially handle hundreds of millions
tweets per day which is close to the total number of daily tweets
in Twitter and present bursty event in finer-granularity.

Keywords-TopicSketch; tweet stream; bursty topic; realtime;

I. INTRODUCTION

With 200 million active users and over 400 million tweets
per day as in a recent report 1, Twitter has become one of
the largest information portals which provides an easy, quick
and reliable platform for ordinary users to share anything
happening around them with friends and other followers. In
particular, it has been observed that, in life-critical disasters
of societal scale, Twitter is the most important and timely
source from which people find out and track the breaking
news before any mainstream media picks up on them and
rebroadcast the footage. For example, in the March 11, 2011
Japan earthquake and subsequent tsunami, the volume of
tweets sent spiked to more than 5,000 per second when
people post news about the situation along with uploads
of mobile videos they had recorded 2. We call such events
which trigger a surge of a large number of relevant tweets
“bursty topics”.

∗This work was done when the author was visiting Living Analytics
Research Centre in Singapore Management University.

1http://www.techvibes.com/blog/twitter-users-tweet-400-million-times-
2012-12-17

2http://blog.twitter.com/2011/06/global-pulse.html

100

50

First tweet
2011-11-01

16:20:51

Our detection
2011-11-01

20:55:35

First news media report
2011-11-02

17:13:07

18:00 00:00 06:00 12:00

Figure 1. The tweet volume of each of the top three keywords of the
topic: “adelyn”, “slap” and “siri”.

Figure 1 shows an example of a bursty topic on November
1st, 2011. A 14-year-old girl from Singapore named Adelyn
(not her real name) caused a massive uproar online after
she was unhappy with her mom’s incessant nagging and
resorted to physical abuse by slapping her mom twice, and
boasted about her actions on Facebook with vulgarities.
Within hours, it soon went viral on the Internet, trending
worldwide on Twitter and was one of the top Twitter trends
in Singapore. For many bursty events like this, users would
like to be alerted as early as it starts to grow viral to keep
track. However, it was only after almost a whole day that
the first news media report on the incident came out. In
general, the sheer scale of Twitter has made it impossible
for traditional news media, or any other manual effort, to
capture most of such bursty topics in real-time even though
their reporting crew can pick up a subset of the trending
ones. This gap raises a question of immense practical value:
Can we leverage Twitter for automated real-time bursty topic
detection on a societal scale?

Unfortunately, this real-time task has not been solved by
the existing work on Twitter topic analysis. First of all,
Twitter’s own trending topic list does not help much as it
reports mostly those all-time popular topics, instead of the
bursty ones that are of our interest in this work. Secondly,
most prior research works study the topics in Twitter in a ret-
rospective off-line manner, e.g., performing topic modeling,
analysis and tracking for all tweets generated in a certain
time period [18], [16], [10], [27], [9]. While these findings
have offered interesting insight into the topics, it is our belief
that the greatest values of Twitter bursty topic detection has
yet to be brought out, which is to detect the bursty topics

2013 IEEE 13th International Conference on Data Mining

1550-4786/13 $31.00 © 2013 IEEE

DOI 10.1109/ICDM.2013.86

837

just in time as they are taking place. This real-time task
is prohibitively challenging for existing algorithms because
of the high computational complexity inherent in the topic
models as well as the ways in which the topics are usually
learnt, e.g., Gibbs Sampling [11] or variational inference [3].
The key research challenge that makes this problem difficult
is how to solve the following two problems in real-time:
(I) How to efficiently maintain proper statistics to trigger
detection; and (II) How to model bursty topics without the
chance to examine the entire set of relevant tweets as in
traditional topic modeling. While some work such as [24]
indeed detects events in real-time, it requires pre-defined
keywords for the topics.

We propose a new detection framework called TopicS-
ketch. To our best knowledge, this is the first work to
perform real-time bursty topic detection in Twitter without
pre-defined topical keywords. It can be observed from Figure
1 that TopicSketch is able to detect this bursty topic soon
after the very first tweet about this incident was generated,
just when it started to grow viral and much earlier than the
first news media report.

We summarize our contributions as follows.
First, we proposed a two-stage integrated solution Top-

icSketch. In the first stage, we proposed a novel data
sketch which efficiently maintains at a low computational
cost the acceleration of three quantities: the total number of
all tweets, the occurrence of each word and the occurrence
of each word pair. These accelerations provide as early
as possible the indicators of a potential surge of tweet
popularity. They are also designed such that the bursty topic
inference would be triggered and achieved based on them.
The fact that we can update these statistics efficiently and
invoke the more computationally expensive topic inference
part only when necessary at a later stage makes it possible to
achieve real-time detection in a data stream of Twitter scale.
In the second stage, we proposed a sketch-based topic model
to infer both the bursty topics and their acceleration based
on the statistics maintained in the data sketch.

Secondly, we proposed dimension reduction techniques
based on hashing to achieve scalability and, at the same
time, maintain topic quality with proved error bounds.

Finally, we evaluated TopicSketch on a tweet stream
containing over 30 million tweets and demonstrated both
the effectiveness and efficiency of our approach. It has been
shown that TopicSketch is able to potentially handle over
300 million tweets per day which is almost the total number
of tweets generated daily in Twitter. We also presented
case studies on interesting bursty topic examples which
illustrate some desirable features of our approach, e.g., finer-
granularity event description.

II. RELATED WORK

While this work is the first to achieve real-time bursty
event detection in Twitter without pre-defined keywords,

related work can be grouped into three categories.

Offline. In this category, it is assumed that there is a
retrospective view of the data in its entirety. There has been
a stream of research studies to learn topics offline from a text
corpus, from the standard topic models such as PLSA [14]
and LDA [3], to a number of temporal topic models such as
[26], [4], [25] and [15]. Since all these models learn topics
off-line, they are not able to detect at an early stage the
new bursty topics that are previously unseen and just started
to grow viral. When it comes to finding bursts from data
stream in particular, [18] proposed a state machine to model
the data stream, in which bursts appear as state transitions.
[16] proposed another solution based on a time-varying
Poisson process model. Instead of focusing on arrival rates,
[12] reconstructed bursts as a dynamic phenomenon using
acceleration and force to detect bursts. Other off-line bursty
topic modeling works include most noticeably [10], [27],
[9]. While MemeTracker [19] is an influential piece of work
which gives an interesting characterisation of news cycle, it
is not designed to capture bursty topics on the fly in Twitter-
like setting as it is hard to decide what the meme of tweets
are.

Online. In this category, certain data structure is built based
on some inherent granularity defined on the data stream.
Detection is made by using the data structure of all data
arriving before the detection point but none after. Some
works make effort on the online learning of topics [2], [6],
[13], while others focus on Topic Detection and Tracking
(TDT) such as [1] and [5]. Yet these solutions do not
scale to the overwhelming data volume like that of Twitter.
In particular, [22] makes use of locality-sensitive hashing
(LSH) to reduce time cost. However, even with LSH, the
computational cost is huge to calculate, for each arriving
tweet, the distances between this tweet and all previous
tweets colliding with this tweet in LSH. Twevent [20] is the
state-of-the-art system detecting events from tweet stream.
The design of Twevent takes an inherent time window of
fixed size (e.g., one day) to find bursty segments of tweets,
falling short of the full dynamicity essential to the real-time
detection task.

Real-time. In this category, time is crucial, so much so
that no fixed time window for detection should be assumed.
While [24] does detect events in real-time, it needs pre-
defined keywords for the topic, making it inapplicable to
general bursty topic detection where no prior knowledge of
the topic keywords is available.

Besides, there are also works on finding frequent items
from large data stream with small memory such as Count-
Min Sketch [8] among others including [21], [7], [17]. Our
TopicSketch deals with a very different and harder problem
of bursty topics.

838

III. SOLUTION OVERVIEW

A. Problem Formulation

We first formulate our real-time Twitter bursty topic
detection problem. In defining a bursty topic, we evaluate
two criteria: (I) There has to be a sudden surge of the
topic’s popularity which is measured by the total number
of relevant tweets. Those all-time popular topics therefore
would not count; (II) The topic must be reasonably popular.
This would filter away the large number of trivial topics
which, despite the spikes in their popularity, are considered
as noises because the total number of relevant tweets is
neglectable.

Denote D(t) as the set of all tweets generated in the tweet
stream up to a given timestamp t. Each tweet d ∈ D(t)
is represented as a bag of words denoted as a vector
{d(i)}1≤i≤N where d(i) is the number of appearance of
word i in d and N is the size of the vocabulary. Each tweet
d is associated with the timestamp of its generation denoted
as td. We use |d| to denote the number of words in tweet d.

We model the tweet stream as a mixture of multiple latent
topic streams, where each topic stream is an inhomogeneous
Poisson process [23] of a topic. A latent topic Tk is charac-
terized by a fixed distribution pk over words such that each
word in a tweet is drawn from a multinomial distribution
of pk, and we use {Tk} to represent the set of all topics.
The rate of a topic Tk, denoted as λk(t), is defined such
that for any small time slice [t, t+dt), there is a probability
λk(t) ·dt that a tweet about Tk is generated. The popularity
of a topic is measured by the total number of its associated
tweets.

A bursty topic is a topic where (I) there is a sudden surge
of its popularity; and (II) it is reasonable popular in the
whole tweet stream in the period when it surges. Given tweet
stream D(t), our task in this paper is to detect bursty topics
from D(t) as early as possible.

B. Solution Overview

The three primary research challenges here are (I) How to
identify the bursty topics, i.e., what are the keywords of the
topics, (II) How to detect a bursty topic as early as possible,
and (III) How to perform the task efficiently in large-scale
real-time setting as Twitter.

Our solution, called TopicSketch, is based on two main
techniques — a sketch-based topic model and a hashing-
based dimension reduction technique. Our sketch-based
topic model provides an integrated two-step solution to both
challenge (I) and (II) above. In the first step, it maintains
as a sketch of the data the acceleration of three quantities:
(1) the whole tweet stream, (2) every word, and (3) every
pairs of words, which are early indicators of popularity surge
and can be updated efficiently at a low cost, making early
detection possible. In the second step, based on the data
sketch, it learns the bursty topics by solving an optimisation

problem. To solve challenge (III), we propose a dimension
reduction technique based on hashing which provides a scal-
able solution to the original problem without compromising
much the quality of the topics.

Figure 2 gives the overview of our proposed TopicSketch
framework with five parts: (I) the tweet stream, (II) the data
sketch, (III) the monitor which tracks changes in the data
sketch and triggers the detection when certain criteria are
satisfied, (IV) the estimator which infers the topics, and
(V) the reporter which evaluates the bursty topics provided
by estimator and reports the detection result. The real-time
detection flow of TopicSketch is the following steps: (1)
Upon the arrival of each tweet, the sketch is updated, which
is an efficient step as detailed in Section IV-A and V-B,
(2) Once the sketch is updated, the change is sent to the
monitor, (3) The monitor tracks the data sketch, compares
it with historical average, and triggers the estimator for
potential bursty topic detection if the difference is larger
than pre-determined threshold. (4) Upon notification, the
estimator takes a snapshot of the sketch and infers the bursty
topics as described in Section IV-B and V-C, and (5) The
inferred bursty topics are sent to the reporter to evaluate and
report. TopicSketch is designed such that steps (1) to (3)
are computationally cheap to enable real-time response and
early detection. Step (4), which is expensive if done naively,
is greatly expedited by dimension reduction techniques as
described in Section V-A.

sketch

time
tweet stream

D(t)

word vector

(5)

(1)

(2)

(3)

(4)

t

current tweet
d

N

X’’(t)

N
S’’(t)

Y’’(t)

N

N

monitor

estimator

reporter

time

S’’(t)

Figure 2. TopicSketch Framework Overview

IV. SKETCH-BASED TOPIC MODEL

We first show how TopicSketch is able to detect potential
bursty topics early by maintaining a novel data sketch, and

839

then present how TopicSketch learns the bursty topics based
on the data sketch.

A. Sketch

Recall that the popularity of a topic is measured by
the total number of relevant tweets. However, it will be
too late if we wait till we observe the surge in volume
to report the bursty topic. An earlier indicator is the rate
of a topic as, mathematically, volume is rate integrated
over time. Our idea of early detection is to monitor the
acceleration of a topic which, compared against volume and
rate, gives an even earlier indicator of the popularity surge.
The acceleration of a topic Tk, denoted as ak(t), is defined
as the derivative of λk(t) over time t. However, as ak(t)
is not directly observable for a latent topic, we need to
infer ak(t) from those observable quantities from D(t). In
general, the acceleration we monitor for a chosen quantity
Q(t) can be mathematically expressed as

d2Q(t)

dt2
= Q′′(t)

In order to achieve both early detection and latent topic
identification, we propose to build a data sketch for D(t)
and set Q(t) to be each of the following three quantities to
be monitored. Figure 2 gives an illustration. (N is the total
number of distinct words.)

(1). S′′(t): The acceleration of the total number of tweets
in D(t), i.e.,Q(t) becomes a scalar denoted as S(t) such
that S(t) = |D(t)|.

(2). X′′(t): The acceleration of each word in the
vocabulary, i.e., Q(t) becomes a N -dimension vector
denoted as X(t) such that Xi(t) =

∑
d∈D(t)

d(i)
|d| , (1 ≤ i ≤ N).

(3). Y′′(t): The acceleration of each pair of words, i.e.,
Q(t) becomes a N ×N matrix denoted as Y(t) such that

Yi,j(t) =

⎧
⎪⎨

⎪⎩

∑
d∈D(t)

d(i)2−d(i)
|d|(|d|−1) , i = j

∑
d∈D(t)

d(i)d(j)
|d|(|d|−1) , i ̸= j

(1 ≤ i ≤ N, 1 ≤ j ≤ N).
These three quantities are chosen because (1) S′′(t) and

X′′(t) provides the earliest indicator of popularity surge,
(2) Y′′(t) maintains keyword correlation information for
bursty topic identification later, and (3) Combined, they can
help infer the latent bursty topics (i.e., pk) as well as the
acceleration of each (i.e., ak(t)), as we show next. Notice
that all these accelerations are easy to compute and update
upon the arrival of every tweet (as shown in Section V),
which is critical for scalability in real-time setting.

B. Topic from Sketch
Besides early detection, the sketch also solves the chal-

lenge of identifying the bursty topics. We envision a space of
latent topics, and we model the tweet stream as a mixture of
multiple latent topic streams. While we set no limit on the
total number of latent topics, we assume that at any time
stamp t, there is an upper bound K on the total number
of active topics Tk whose rate λk(t) is greater than zero.
Therefore, at any time stamp t, we are only interested in
discovering the K active latent topics that are bursty. To
identify bursty topics from the data sketch, we first show
some useful properties of the three accelerations.

By the superposition property of inhomogeneous Poisson
process [23], the whole tweet stream, which is a mixture
of multiple inhomogeneous processes of topics, is also an
inhomogeneous Poisson process itself. Its rate function is
K∑

k=1
λk(t). We can simply use S′(t) = dS(t)

dt to estimate it.

Further we have the following equation,

S′′(t) =
K∑

k=1

ak(t) (1)

Then by the property of linear combinations of expecta-
tion, it is easy to derive

E[X′′(t)] =
K∑

k=1

ak(t) · pk (2)

E[Y′′(t)] =
K∑

k=1

ak(t) · pk · pTk (3)

where pk is the vector representing the distribution over
words of topic Tk.

The equations 1, 2 and 3 imply that we can infer the
topics {Tk} and their acceleration from the sketch. At time
t, we can estimate the parameters {pk} and {ak(t)} from
the data sketch as follows. We seek such {pk} and {ak(t)}
that satisfy Equation 1 and minimize the differences
between the observed values and the expectations as in
Equation 2 and Equation 3. Denote the weights for Equation
2 and 3 as wX > 0 and wY > 0 respectively. To estimate
{pk} and {ak(t)}, we only need to solve the following
optimization problem.

minimize
f = wX · eX + wY · eY (4)

s.t.
K∑

k=1

ak(t) = S′′(t) (5)

N∑

i=1

pk,i = 1, 1 ≤ k ≤ K (6)

pk,i ≥ 0, 1 ≤ k ≤ K, 1 ≤ i ≤ N (7)

840

where

eX =
N∑

i=1

(
K∑

k=1

ak(t) · pk,i − X′′
i (t))

2 (8)

eY =
N∑

i=1

N∑

j=1

(
K∑

k=1

ak(t) · pk,i · pk,j − Y′′
i,j(t))

2 (9)

eX and eY in objective function 4 are the summed square
error in Equation 2 and Equation 3 respectively. Condition
5 is indeed Equation 1. Weights wX and wY are to be
tuned empirically as the variance of X′′(t) and Y′′(t) are
different. More details on setting the weights are discussed
in the experiment part of Section VI.

V. REALTIME DETECTION TECHNIQUES

In this section, we present the technique details to achieve
real-time efficiency for bursty topic detection in the huge-
volume tweet stream setting.

A. Dimension Reduction
The first challenge is the high dimension problem as a

result of the huge number of distinct words N in the tweet
stream, which could easily reach the order of millions or
even larger (see the experiments in Section VI-A). This
results not only in an enormous data sketch (recall Y′′(t)
in the sketch is an N ×N matrix) but also an optimization
problem of very high dimensions, i.e. O(N ·K) .

Since the problem is mainly because N is too large,
one natural solution is to keep only a set of active words
encountered recently, e.g. in the last 15 minutes. When a
burst is triggered, consider only the words in this recent set.
However, it turns out that the size of this reduced active word
set for tweet stream is still too large (see Section VI-A) to
solve the optimization problem efficiently.

Instead of keeping a set of active words, we propose a
novel solution by hashing these distinct words into B buck-
ets, where B is a number much smaller than N , and treating
all the words in a bucket as one “word”. Consequently,
the size of the sketch becomes O(B2) and the number
of dimensions for the optimization problem is reduced to
O(B ·K), which are significantly smaller than O(N2) and
O(N · K) as in the original problem. After hashing, what
we obtain is the distribution over buckets, rather than the
distribution over words, which means we would need to
recover the probabilities of words from the probabilities of
buckets. To solve this problem, the observation is that, for
the word distribution of bursty topics, we care only the
top words with highest probabilities which represent the
bursty topic. Therefore we adapt the count-min algorithm
in [8], [17] to our setting, which can dynamically maintain
frequent items over data streams. The difference is that in
our setting we want to maintain words with high probability
in a distribution rather than items with high frequency in a
data stream. However, the underling logic works the same
for both settings, which is the following: If we use H

hash functions, instead of just one, to map each word, the
probability that two top words of a topic fall into the same
bucket for all these H hash functions is extremely small.
More importantly, if there is only one word with dominantly
high probability in a bucket, we can then use the probability
of the bucket to approximate the probability of the high-
probability word.

In particular, it works as follows. Assume we have H hash
functions (H1,H2, ...,HH) which map words to buckets
[1...B] uniformly and independently. For a topic Tk with
word distribution pk, and each hash function Hh, 1 ≤
h ≤ H , we can estimate the distribution over buckets
{p(h)k,j =

∑
i|Hh(i)=j

pk,i}Bj=1 for all the hash functions. Then

we use count-min algorithm to estimate the probability of
each word i as min1≤h≤H{p(h)k,H(i)}, and return the words
of high probability {i|min1≤h≤H{p(h)k,H(i)} ≥ s}, where s
is a probability threshold, e.g., 0.02. We also maintain a set
of active words, so that we estimate the probability of words
only in this set rather than all the words in the vocabulary.
This algorithm will estimate the probability of each word
with error no greater than e

B with a probability of e−N/eH .
The details of the proof can be found in [17].

The sketch after dimension reduction is illustrated in
Figure 3. There is no change for S′′(t). When a word
falls into different buckets for different hash functions,
we maintain H vectors {X′′(t)(h)}Hh=1 for X′′(t) and H
matrices {Y′′(t)(h)}Hh=1 for Y′′(t).

To estimate the distribution over buckets {p(h)}Bj=1, it is
sufficient to change Equation 8 and Equation 9 as follows.

eX =
H∑

h=1

B∑

i=1

(
K∑

k=1

ak · p(h)k,i − X′′(h)
i)2 (10)

eY =
H∑

h=1

B∑

i=1

B∑

j=1

(
K∑

k=1

ak · p(h)k,i · p
(h)
k,j − Y′′(h)

i,j)2 (11)

Accordingly Condition 6 and 7 should be adjusted as
follows.

B∑

i=1

p(h)k,i = 1, 1 ≤ k ≤ K, 1 ≤ h ≤ H (12)

p(h)k,i ≥ 0, 1 ≤ k ≤ K, 1 ≤ i ≤ B, 1 ≤ h ≤ H (13)

After the dimension reduction, the memory cost for the
sketch is O(H · B2), and the number of dimension for the
optimization problem is O(H · B · K), which are small
enough to be practically feasible.

B. Efficient Sketch Maintenance
We adopt an idea similar as EMA (Exponential Moving

Average) in [12] to estimate the rate. The difference is that
[12] processes discrete time series data, while we process a
continuous tweet stream, i.e. tweets can arrive at any time
point. Denote D(t) as {d1, d2, ..., d|D(t)|}, such that td1 ≤

841

X’’(t)

B

H

B

H

S’’(t)

Y’’(t)sketch

Figure 3. New Sketch after Dimension Reduction

td2 ≤ ...td|D(t)| ≤ t. And set td0 = 0. Equation 14 below
estimates the rate. ∆T here is the smooth factor. The larger
the ∆T , the more smooth the rate, but less reflective of the
recent information though.

S′
∆T (t) =

|D(t)|∑

i=1

e
(tdi

−t)

∆T

∆T
(14)

For any time point t between (tdi−1 , tdi], we can update
the current rate incrementally by Equation 15.

S′
∆T (t) =

⎧
⎨

⎩
S′
∆T (tdi−1) · e

(tdi−1
−t)

∆T , t ∈ (tdi−1 , tdi)

S′
∆T (tdi−1) · e

(tdi−1
−t)

∆T + 1
∆T , t = tdi

(15)

Similar to MACD (Moving Average Convergence / Di-
vergence) in [12], we use Equation 16 to estimate the
acceleration.

S′′
∆T1,∆T2

(t) =
S′
∆T1

(t)− S′
∆T2

(t)

∆T2 −∆T1
(16)

Same as ∆T , ∆T1 and ∆T2 are the smooth factors.
The computational cost for maintaining any acceleration is
therefore O(1).

Besides, we developed a lazy maintenance technique to
efficiently maintain each acceleration in X′′(t) and Y′′(t),
reducing the number of accelerations to update from O(N2)
to O(H ·|d|2). The details are omitted here due to space limit.

C. Topic Inference
To solve the optimization problem in Section IV-B, we use

a gradient-based method to optimize the objective function f
over the parameters {p(h)k,i } and {ak}. Although the number
of dimensions is reduced, it is still significant for optimiza-
tion. To cope with that, we update p(h)k,i , ak separately, rather
than update them together, so that some updates can be
performed in parallel. We present here a coordinate ascent
method for the optimization. Denote {ak}Kk=1 as vector a,
{p(h)k,i }Bi=1 as vector p(h)

k . We can derive their coordinate-
wise gradients : ∂f

∂a , ∂f

∂p(h)
k

, and their second derivatives :
∂2f

∂a∂aT , ∂2f

∂p(h)
k ∂p(h)

k

T . After initializing a and p(h)
k , we can

iteratively update them by using Newton-Raphson approach.
As when a is fixed, p(h)

k are independent for different h, we

while stop criterion is not satisfied:
for h = 1...H (in parallel)

for k = 1...K

fixing a and {p(h)
k′ }k′ ̸=k , use Newton-Raphson

approach to find best p(h)
k based on ∂f

∂p
(h)
k

and

∂2f

∂p
(h)
k ∂p

(h)
k

T

endfor
endfor
fixing {p(h)

k }Kk=1, use the Newton-Raphson approach to
find the best a based on ∂f

∂a and ∂2f
∂a∂aT

endwhile

Table I
THE TOPIC INFERENCE ALGORITHM

can update them in parallel. Since there are linear constraints
for both a and p(h)

k , the Newton-Raphson approach is further
adapted so that a and p(h)

k would be correctly updated. We
check whether the maximum number of iterations is reached
or parameters converge to decide whether the stop criterion
is satisfied. An overview of this optimization procedure is
given in Table I.

VI. EVALUATION

In this section, we present the evaluation of our TopicS-
ketch system for both efficiency and effectiveness. We use
a Twitter data set which contains 3,165,479 users. These
users are obtained by a snowball-style crawling starting from
a seed set of Singapore local celebrities and active users
and tracing their follower/followee links up to two hops.
We crawled all their tweets. In this evaluation we use the
subset of tweets between April 1, 2013 and April 30, 2013
to simulate a live tweet stream, which contains 32,479,134
tweets. Some spam accounts are filtered manually. We im-
plemented our solution in Java 1.7 using 64-bit addressing,
and executed on multiple cores of an Intel Xeon 3.06 GHz
machine. We only evaluated our solution after dimension
reduction as the dimension of the original solution presented
in Section IV-B is too high to be solved practically. The
number of buckets B used in the universal hashing has been
empirically set to 300, and the number of hash functions H
to 5 for a good balance between efficiency and effectiveness.

A. Efficiency Evaluation

In this section, we evaluate the performance of the sketch
maintenance by the throughput on the tweet stream. We
also evaluate the performance of the estimator by the topic
inference time. In our tweet set, after removing stop words,
the average number of words in a tweets is 8 (evidence
for small |d|). The total number of the distinct words is
8,470,180 (evidence for high dimensions). The number of
distinct words in the 15-minutes active word set is between
10,000 and 20,000.

842

1) Sketch Maintenance: In our experiment, we set the
smooth factor as : ∆T1=15 minutes, ∆T2 = 5 minutes.
According to the analysis in Section V-B, the complexity
for maintaining the sketch is O(H · |d|2). It is not hard
to maintain the sketch in parallel on multiple cores or
machines. We maintain the sketch on multiple cores on a
single machine, which can be extended easily to multiple
machines for better performance. We partition the job into
H pieces, each in charge of one hash function Hh, i.e.
maintaining X′′(t)(h) and Y′′(t)(h). We build a thread pool,
and submit H jobs to the thread pool for each arriving tweet.
To evaluate the throughput of the sketch maintenance and its
scalability, we set the number of threads in the thread pool
from 1 to 6 respectively. Figure 4(a) shows the throughput
for thread pool of different sizes. Notice that when the
number of the threads is 1, the throughput is 4,289 tweets
per second (over three hundred millions tweets per day),
which is roughly the total number of tweets generated daily
in the whole Twitter network. In contrast, we find in our
experiments that it would take many days to process the data
of this scale with LDA-based methods. Also observe that the
throughput increases as the number of threads increases. As
we can see the increase in our experiment is not linear. In
fact, as H = 5, the total number of jobs is 5, which are
assigned to the threads in thread pool, the ideal ratio of
time per tweet is 5 : 3 : 2 : 2 : 1 : 1. That is why the
throughputs for 3 threads and 4 threads, as well as for 5
threads and 6 threads are almost the same. However, we
can see a slight drop when the number of threads increases
to 6. One possible explanation is because of the additional
coordination cost for one additional thread.

!"

#"

$%"

$&"

'('$ '% ') '! '* '& '+

,'
-.

'/0
11

/2'
31

4'2
15

,'-.'/641782

!"
!#$
!#"
!%$
!%"
!%$

!$!# !% !% !& !" !' !(

)*
+,

-,
*.

,!
/)0

,!
12
3

4!5+!/6-,792

(a) (b)
Figure 4. (a) Throughput and (b) Inference time

2) Topic Inference: We empirically set wX = 0.01 and
wY = 1 as we have observed that the variance of X′′ is larger
than that of Y′′. We set the number of topics K to a small
number of 5. As described in Section V-C, we designed a
parallel algorithm to infer the parameters {p(h)k,i } and {ak},
and implemented it on multiple cores on a single machine.
In particular, we built a thread pool and submitted H jobs to
the thread pool. Each job is in charge of updating parameters
{p(h)

k }Kk=1 for one hash function Hh using Newton-Raphson
approach. We set the initial values of p(h)k,i to 1

B and ak to S′′
K .

In addition, we set the maximum number of iterations for the

Newton-Raphson approach to 25, the maximum number of
outer loops to 50, and the size of thread pool from 1 to 6. The
performance of the algorithm is shown in Figure 4(b). The
result shows that although the sequential version features
an affordable running time (less than half minute), parallel
version provides significant improvement (15 seconds with 5
threads). Same as Figure 4(a), the performance drops slightly
when the number of threads is increased to 6, which may
due to the additional coordination cost.

B. Effectiveness Evaluation

To evaluate the effectiveness of our solution, we com-
pare TopicSketch against both Twitter’s official trending
topic list and the state-of-the-art Twitter event detection
system Twevent [20]. While TopicSketch detects bursty
topics real-time, Twevent reports events on a daily basis.
To compare the two, in Section VI-B1 we list the topics
detected by both and discuss in detail the differences. When
comparing against Twitter’s own trending topics in Section
VI-B2, we present the timestamps of detected bursty topics
from TopicSketch.

1) Comparison with Twevent: To compare with
Twevent, we used the same dataset as used in the
original paper [27], which is a collection of 4,331,937
tweets published by 19,256 unique Singapore based users
(according to the user profile information). As there is no
ground truth along with this dataset, Twevent was evaluated
in [20] by precision and recall based on manual labelling.
Instead of simply comparing precision and recall with
theirs based on our own manual labelling, which is hardly
objective, we present in Table II all the events detected by
both algorithms3 between June 7, 2010 to June 12, 2010,
in which period several big events happened, including
Apple WWDC 2010, MTV Movie Awards 2010, and FIFA
World Cup 2010, and compare the differences between the
results. We manually group together sub-events belonging
to a single larger event.

We have the following observations from the result
comparison. First, for all topics with significant bursts
captured by both algorithms, TopicSketch provides
temporally-ordered sub-events that are more descriptive
of the corresponding single event detected by Twevent.
Take the event of MTV Movie Awards for example, Twevent
provides these segments: mtv movie awards, mtv, new moon,
twlight, robe, which can represent this event and also the
sub-event “The Twilight Saga : New Moon” got the Best
Movie Award. TopicSketch detected three bursty topics
“stewart, kristen, female, mtv”, “sandra, bullock, mtv, movie”
and “movie, moon, mtv, awards”, in which each represents
a sub-event listed in Table II. Second, TopicSketch is
able to detect events with bursts over shorter duration

3We referred the results listed in Table 2 from [20]. And the repeated
events were filtered out.

843

Date Event Sub-Event TopicSketch Twevent

7

MTV Moive Awards 2010
Kristen Stewart won the Best Female Performance stewart,kristen,female,mtv mtv movie awards,
Sandra Bullock won the Generation Award sandra,bullock,mtv,movie mtv, new moon,
Best Movie Award :“The Twilight Saga: New Moon” movie,moon,mtv,awards twilight, robe

Super Junior’s Yesung(@shfly3424) created his Twitter account. yesung, twitter, @shfly3424 None

Fans celebrated 3 year anniversary for boy band “F.T. Island” in Twitter. f3island, love, <3 None

Farmville client for iPhone 4 was demonstrated. #wwdc, iphone, farmville steve jobs,
Steve Jobs released Retina display of iPhone 4 was introduced. iphone,4,#wwdc,display,retina imovie, wwdc,
iPhone 4 during iMovie for iPhone 4 was demonstrated. iphone, 4, imovie, #wwdc iphone,
WWDC2010 New iPhone 4 was available in Singapore in July. iphone, 4, singapore, july wifi

8

Fans asked pop musician Justin Bieber to follow them in Twitter @justinbieber, follow, please None

Fans celebrated 5 year anniversary for boy band “SS501” in Twitter #5yrss501, ss501, #5yearss501 None

The music video “Alejandro” by Lady GaGa was premiered alejandro, video, gaga
lady gaga, alejandro
music video, gaga, mv

9

Korean pop singer Eunhyuk(@allrisesilver) posted his new photo and fans afternoon, @allrisesilver, Nonesaid good afternoon to him. http://twitpic.com/1v6sc2
Fans tried to trend hashtag #loveisalexander(Alexander is a member #loveisalexander, <3, Noneof Korean pop boy band U-KISS). @alexander 0729
A number of users complained they could not use twitter due to over-capacity. None twitter, whale, stupid,
A logo with whale is usually used to denote over-capacity. capacity, over again

The season finale of American TV series Glee was broadcasted on June 8, 2010. glee, yeah, watching watching glee,glee,season
season finale,channel

10

Korean pop boy group Infinite (consists of 7 members) had a performance. #infinite7, huh None

Korean actor Ok Taec-Yeon(@taeccool) opened twitter account. @taeccool,twitter,taecyeon,taec None

The movie The Karate Kid was released on June 10, 2010 in Singapore. None karate kid, movie
watch movie

Super Junior’s Yesung posted a photo about his pet turtles. None yesung, tweeted

11

Super Junior was performing “Bonamana” on Music Bank. super, junior, bonamana None

SS501 won the K-Chart on Music Bank. ss501, won, congrats None

Match began. south,world,cup,africa,mexico south africa,
South Africa vs Mexico South Africa first goaled. (1-0) africa,south,goal,mexico,1-0 vs mexico,
in World Cup 2010. Mexico goaled. (1-1) mexico, goal, 1-1 mexico, goal,

At last draw. mexico, africa, draw, south first goal

Uruguay vs France in World Cup 2010. None uruguay va france,
uruguay, france, vs

12

Match began. korea, south, greece, #kor south korea, greece,
South Korea vs Greece South Korea first goaled. korea, goal, scored, 1 korea vs greece,
in World Cup 2010. Park Ji-Sung from Korea goaled. korea, goal, ji, 2-0 korea won,

South Korea won the match. korea, won, #kor, win korea
Argentina vs Nigeria Argentina first goaled. argentina, goal, 1-0 arg, argentina, nigeria,
in World Cup 2010. Argentina won the match. argentina, 1-0, nigeria, won argentina vs nigeria,messi

Match began. england, vs, usa, match usa,
England vs USA Steven Gerrard from England goaled. gerrard, england, steven, goal england,
in World Cup 2010. GoalKeeper Robert Green didn’t catch a ball. green, robert, wtf eng,

USA goaled. usa, england, goal, 1 vs

Table II
LIST OF EVENTS DETECTED BY TOPICSKETCH AND TWEVENT

which are missed by Twevent. For example, the event of
fans celebrating 5-year anniversary for boy band “SS501” in
Twitter. Twevent missed this event because this event, which
appeared as a burst in about 2 hours and then disappeared,
does not constitute a burst significant enough when consid-
ered in a whole-day period. Third, TopicSketch would
miss events with no significant bursts. For instance, the
match between Uruguay and France in World Cup 2010
was detected by Twevent, but missed by TopicSketch. By
checking the tweets of that day, we found that this match
was hold at about 2am in Singapore time zone and caused
no significant burst. In case study part of Section VI-C, we
give more detailed examples to explain the reasons behind

these observations.

2) Comparison with Twitter trending topic: The trending
topics provided by Twitter API are usually represented by
single words, hashtags and phrases. Our list of trending
topics is obtained at a frequency of every 5 minutes from the
beginning of 2013. To demonstrate the difference between
the trending topics as presented by Twitter and the bursty
topics we are interested in, which are two related yet differ-
ent concepts, we focus on the day of April 8, 2013, when
the former British Prime Minister Margaret Thatcher died.
We enumerated all the trending topics of Twitter for this
day. By verifying bursty events and filtering out those that
are not (including those all-time popular topics), we found

844

Event First detected by TopicSketch First appeared in Twitter
The popular program WrestleMania was discussed. None #wrestlemania (14:34:12)
Fans asked Luke Brooks (@luke brooks) to follow them. @luke brooks, #followmeluke, follow (19:06:51) #followmeluke (18:54:12)
The sudden demise of Margaret Thatcher. thatcher, margaret (20:05:51) margaret thatcher (20:49:12)

Table III
LIST OF EVENTS DETECTED BY TOPICSKETCH AND TWITTER ON APRIL 8, 2013

three events as shown in Table III. In Figure 5, we show the
number of tweets per minute which contain the keyword
of each event and the time stamp when TopicSketch and
Twitter each detected them.

Our observation is that: the more bursty the event is, the
better TopicSketch performs. As there was no obvious
burst, TopicSketch missed the event of wrestlemania. For
the event of followmeluke, Twitter is about 10 minutes faster
than TopicSketch. However, for the big breaking event of
thatcher’s demise, TopicSketch is about 40 minutes faster
than Twitter, and only about 15 minutes later than the first
relevant tweet in our dataset.

Twitter

TopicSketch

40

20

06:00 12:00 18:00

Figure 5. Topics detection from TopicSketch and Twitter.

C. Case Studies

In this section, we discuss the advantages and limitations
of TopicSketch through some illustrative examples.

Finer-granularity Event Description. We use the exam-
ple of Apple WWDC 2010 to demonstrate TopicSketch’s
ability to describe events at a finer granularity. On June
7, 2010, Steve Jobs announced the release of the fourth
generation iPhone, causing huge wave in Twitter. At this
WWDC, several new features of this new generation iPhone
were introduced, including farmville client, retina display
and iMovie. As shown in Table II, TopicSketch not only
detected the big event of Apple WWDC 2010 as a whole,
it also detected a sequence of sub-events. Along timeline,
we show in Figure 6(a) the number of tweets per minute
which contain a keyword of each sub-event, in Figure 6(b)
the number of tweets per minute which contain the keywords
of this event – wwdc and #wwdc. From this figure we can
see the duration of the burst of “wwdc” is quite long for one
day period, which is a big trend. So it is significant enough to
be detected by both TopicSketch and Twevent. Compared
with “wwdc”, the duration of the burst of each sub-event is

relatively short, which is about 15 minutes. The keywords
such as “display” appeared and disappeared in a short time
period and it is not significant enough considered against
a longer time window to be detected by Twevent. As the
sketch captures the acceleration of the tweet stream which
reflects real-time data dynamics, TopicSketch successfully
detected them. In particular, each peak in the figure which
triggers our system indeed corresponds to a highlight of
the WWDC event, which are some of the features as they
were being announced, and from which we can tell those
new features of iPhone that users find more interesting than
others.
Bursty Topic vs Continual Topic. As shown in Table
II, on June 10, TopicSketch detected the event of the
performance of Infinite while Twevent missed it. In the
meantime, Twevent detected the event of the release of “The
Karate Kid”, while TopicSketch missed it. In Figure 6(c)
we show the number of tweets per minute which contain
the keywords of these two event – #infinite7 and karate.
Form this figure, we can see that for karate, there was no
obvious burst on the timeline as it was being continually
discussed. In contrast, for #infinite7, we can see a major
burst over a few hours along the timeline. It is clear that,
due to its daily-base detection, Twevent is good at detecting
events that are continually discussed over a long period of
time, but may miss events with shorter bursts. On the other
hand, one would arrive almost the opposite conclusion for
TopicSketch.
Spam Detection It is interesting to note that TopicSketch
could help detect spam by surfacing bursty topics with
regular appearing patterns. Figure 6(d) illustrates the volume
of tweets which contain a spam url in one day. A burst
roughly every 4 hours can be easily identified. Although
TopicSketch is not designed for spam detection, spam
suspects, once detected, can be easily verified by further
tracking.

VII. CONCLUSIONS

In this paper, we proposed TopicSketch a framework
for real-time detection of bursty topics from Twitter. Due
to the huge volume of tweet stream, existing topic models
can hardly scale to data of such sizes for real-time topic
modeling tasks. We developed a novel concept of “Sketch”,
which provides a “snapshot” of the current tweet stream and
can be updated efficiently. Once burst detection is triggered,
bursty topics can be inferred from the sketch. Compared

845

20

15

10

5

16:00

farmville

display

imovie july

17:00 18:00 19:00

10

5

00:00 06:00 12:00 18:00

(a) (c)

10

5

16:00 17:00 18:00 19:00

wwdc
#wwdc

1

00:00 06:00 12:00 18:00

2

3

4

5

(b) (d)
Figure 6. Case studies. (a)-(b) Apple WWDC 2010; (c) events infinite7 and karate; (d) detected bursty topic created by spam.

with existing event detection system, our experiments have
demonstrated the superiority of TopicSketch in detecting
bursty topics in real-time.

ACKNOWLEDGMENT

This research is supported by the Singapore National Re-
search Foundation under its International Research Centre @
Singapore Funding Initiative and administered by the IDM
Programme Office, Media Development Authority (MDA).

REFERENCES
[1] J. Allan, R. Papka, and V. Lavrenko. On-line new event detection and tracking.

In SIGIR, pages 37–45, 1998.

[2] L. AlSumait, D. Barbará, and C. Domeniconi. On-line lda: adaptive topic
models for mining text streams with applications to topic detection and tracking.
In ICDM, 2008.

[3] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022, 2003.

[4] D. M. Blei and J. D. Lafferty. Dynamic topic models. In Proceedings of the
23rd international conference on Machine learning, pages 113–120, 2006.

[5] T. Brants, F. Chen, and A. Farahat. A system for new event detection. In
SIGIR, pages 330–337, 2003.

[6] K. R. Canini, L. Shi, and T. L. Griffiths. Online inference of topics with
latent dirichlet allocation. In Proceedings of the International Conference on
Artificial Intelligence and Statistics, volume 5, pages 65–72, 2009.

[7] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking
most frequent items dynamically. In Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 296–306, 2003.

[8] G. Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[9] Q. Diao, J. Jiang, F. Zhu, and E.-P. Lim. Finding bursty topics from
microblogs. In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers-Volume 1, pages 536–544, 2012.

[10] G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu. Parameter free bursty events
detection in text streams. In Proceedings of the 31st international conference
on Very large data bases, pages 181–192, 2005.

[11] T. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the
National Academy of Sciences of the United States of America, 101(Suppl
1):5228–5235, 2004.

[12] D. He and D. Parker. Topic dynamics: an alternative model of bursts in streams
of topics. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 443–452, 2010.

[13] M. D. Hoffman, D. M. Blei, and F. Bach. Online learning for latent dirichlet
allocation. Advances in Neural Information Processing Systems, 23:856–864,
2010.

[14] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 50–57, 1999.

[15] L. Hong, B. Dom, S. Gurumurthy, and K. Tsioutsiouliklis. A time-dependent
topic model for multiple text streams. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 832–
840, 2011.

[16] A. Ihler, J. Hutchins, and P. Smyth. Adaptive event detection with time-varying
poisson processes. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 207–216, 2006.

[17] C. Jin, W. Qian, C. Sha, J. Yu, and A. Zhou. Dynamically maintaining frequent
items over a data stream. In Proceedings of the twelfth international conference
on Information and knowledge management, pages 287–294, 2003.

[18] J. Kleinberg. Bursty and hierarchical structure in streams. Data Mining and
Knowledge Discovery, 7(4):373–397, 2003.

[19] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics
of the news cycle. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 497–506, 2009.

[20] C. Li, A. Sun, and A. Datta. Twevent: segment-based event detection
from tweets. In Proceedings of the 21st ACM international conference on
Information and knowledge management, pages 155–164, 2012.

[21] G. S. Manku and R. Motwani. Approximate frequency counts over data streams.
In Proceedings of the 28th international conference on Very Large Data Bases,
pages 346–357, 2002.

[22] S. Petrović, M. Osborne, and V. Lavrenko. Streaming first story detection with
application to twitter. In HLT-NAACL, pages 181–189, 2010.

[23] S. Ross. Stochastic processes. Wiley, New York, 1996.

[24] T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: real-
time event detection by social sensors. In Proceedings of the 19th international
conference on World wide web, pages 851–860, 2010.

[25] C. Wang, D. Blei, and D. Heckerman. Continuous time dynamic topic models.
In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence,
pages 579–586, 2008.

[26] X. Wang and A. McCallum. Topics over time: a non-markov continuous-time
model of topical trends. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 424–433, 2006.

[27] J. Weng and B.-S. Lee. Event detection in twitter. Proc. of ICWSM, 2011.

846

